Sánchez-Ruiloba Lucía, Cabrera-Poch Noemí, Rodríguez-Martínez María, López-Menéndez Celia, Jean-Mairet Roberto Martín, Higuero Alonso M, Iglesias Teresa
Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas-Universidad Autónoma de Madrid, Arturo Duperier, 4, 28029-Madrid, Spain.
J Biol Chem. 2006 Jul 7;281(27):18888-900. doi: 10.1074/jbc.M603044200. Epub 2006 May 1.
Protein kinase D (PKD) controls protein traffic from the trans-Golgi network (TGN) to the plasma membrane of epithelial cells in an isoform-specific manner. However, whether the different PKD isoforms could be selectively regulating the traffic of their specific substrates remains unexplored. We identified the C terminus of the different PKDs that constitutes a postsynaptic density-95/discs large/zonula occludens-1 (PDZ)-binding motif in PKD1 and PKD2, but not in PKD3, to be responsible for the differential control of kinase D-interacting substrate of 220-kDa (Kidins220) surface localization, a neural membrane protein identified as the first substrate of PKD1. A kinase-inactive mutant of PKD3 is only able to alter the localization of Kidins220 at the plasma membrane when its C terminus has been substituted by the PDZ-binding motif of PKD1 or PKD2. This isoform-specific regulation of Kidins220 transport might not be due to differences among kinase activity or substrate selectivity of the PKD isoenzymes but more to the adaptors bound to their unique C terminus. Furthermore, by mutating the autophosphorylation site Ser(916), located at the critical position -2 of the PDZ-binding domain within PKD1, or by phorbol ester stimulation, we demonstrate that the phosphorylation of this residue is crucial for Kidins220-regulated transport. We also discovered that Ser(916) trans-phosphorylation takes place among PKD1 molecules. Finally, we demonstrate that PKD1 association to intracellular membranes is critical to control Kidins220 traffic. Our findings reveal the molecular mechanism by which PKD localization and activity control the traffic of Kidins220, most likely by modulating the recruitment of PDZ proteins in an isoform-specific and phosphorylation-dependent manner.
蛋白激酶D(PKD)以亚型特异性方式控制从反式高尔基体网络(TGN)到上皮细胞质膜的蛋白质运输。然而,不同的PKD亚型是否能选择性地调节其特定底物的运输仍未得到探索。我们发现,不同PKD的C末端在PKD1和PKD2中构成了一个突触后致密物95/盘状大蛋白/紧密连接蛋白1(PDZ)结合基序,但在PKD3中没有,这导致了对220 kDa的激酶D相互作用底物(Kidins220)表面定位的差异控制,Kidins220是一种神经膜蛋白,被确定为PKD1的首个底物。PKD3的激酶失活突变体只有在其C末端被PKD1或PKD2的PDZ结合基序取代时,才能改变Kidins220在质膜上的定位。这种对Kidins220运输的亚型特异性调节可能不是由于PKD同工酶的激酶活性或底物选择性的差异,而是更多地归因于与其独特C末端结合的衔接蛋白。此外,通过突变位于PKD1内PDZ结合域关键位置-2的自磷酸化位点Ser(916),或通过佛波酯刺激,我们证明该残基的磷酸化对于Kidins220调节的运输至关重要。我们还发现Ser(916)的反式磷酸化发生在PKD1分子之间。最后,我们证明PKD1与细胞内膜的结合对于控制Kidins220的运输至关重要。我们的研究结果揭示了PKD的定位和活性控制Kidins220运输的分子机制,很可能是通过以亚型特异性和磷酸化依赖性方式调节PDZ蛋白的募集来实现的。