Suppr超能文献

棉花叶绿素突变体的高光效。

High photosynthetic rate of a chlorophyll mutant of cotton.

机构信息

Department of Plant Sciences, Department of Biology, and Plant Science Research Division, Agricultural Research Service, U.S. Department of Agriculture, Texas A&M University, College Station, Texas 77843.

出版信息

Plant Physiol. 1972 Jun;49(6):968-71. doi: 10.1104/pp.49.6.968.

Abstract

In a chlorophyll mutant (virescent) and wild-type cotton (Gossypium hirsutum L.), a number of photosynthetic parameters have been measured and compared with those published for other chlorophyll mutants. (a) The photosynthetic rates at 230 w/m(2) (400-700 nm) from a tungsten lamp were 36.8 mg CO(2) fixed/dm(2).hr (virescent) and 39.5 mg CO(2) fixed/dm(2).hr (wild-type). On a chlorphyll basis, the photosynthetic rates were 36.8 and 12.1 mg CO(2) fixed/mg chl.hr, respectively. (b) The photosynthetic rates at 13 w/m(2) (400-700 nm) from a tungsten source were 7.1 mg CO(2) fixed/dm(2).hr (virescent) and 7.4 mg CO(2) fixed/dm(2).hr (wild-type). On a chlorophyll basis, the photosynthetic rates were 6.0 and 1.4 mg CO(2) fixed/mg chl.hr, respectively. (c) The chlorophyll a/b ratios of the virescent and wild-type leaves were 3.3 and 4.1 (d) The chlorophyll/carotenoid ratios for the virescent and wild-type leaves were 3.2 and 7.3, respectively. (e) The photosynthetic carbon metabolism of the chlorophyll mutant was through the reductive pentose phosphate cycle. (f) The CO(2) compensation points for the virescent and wild-type plants were similar. (g) The mutant and wild-type leaves have the same quantum yield in the red part of the visible spectrum, but the virescent leaves have a lower quantum yield in the blue part of the spectrum. (h) Virescent and wild-type leaves contain similar levels on a protein basis of several reductive pentose phosphate cycle enzymes.

摘要

在叶绿素突变体(黄化)和野生型棉花(Gossypium hirsutum L.)中,测量了许多光合作用参数,并与其他叶绿素突变体公布的数据进行了比较。(a) 钨灯在 230 w/m²(400-700nm)下的光合速率为 36.8mg CO2 固定/dm²·hr(黄化)和 39.5mg CO2 固定/dm²·hr(野生型)。以叶绿素为基础,光合速率分别为 36.8 和 12.1mg CO2 固定/mg chl·hr。(b) 钨源在 13 w/m²(400-700nm)下的光合速率为 7.1mg CO2 固定/dm²·hr(黄化)和 7.4mg CO2 固定/dm²·hr(野生型)。以叶绿素为基础,光合速率分别为 6.0 和 1.4mg CO2 固定/mg chl·hr。(c) 黄化和野生型叶片的叶绿素 a/b 比分别为 3.3 和 4.1。(d) 黄化和野生型叶片的叶绿素/类胡萝卜素比分别为 3.2 和 7.3。(e) 叶绿素突变体的光合作用碳代谢途径是通过还原性戊糖磷酸循环。(f) 黄化和野生型植物的 CO2 补偿点相似。(g) 突变体和野生型叶片在可见光谱的红光部分具有相同的量子产率,但黄化叶片在光谱的蓝光部分具有较低的量子产率。(h) 黄化和野生型叶片在蛋白质基础上具有相似水平的几种还原性戊糖磷酸循环酶。

相似文献

1
High photosynthetic rate of a chlorophyll mutant of cotton.
Plant Physiol. 1972 Jun;49(6):968-71. doi: 10.1104/pp.49.6.968.
2
Characteristics of a virescent cotton mutant.
Plant Physiol. 1968 Oct;43(10):1611-6. doi: 10.1104/pp.43.10.1611.
3
Fine mapping and candidate gene analysis of the virescent gene v in Upland cotton (Gossypium hirsutum).
Mol Genet Genomics. 2018 Feb;293(1):249-264. doi: 10.1007/s00438-017-1383-4. Epub 2017 Oct 20.
5
Fine mapping and molecular characterization of the virescent gene vsp in Upland cotton (Gossypium hirsutum).
Theor Appl Genet. 2019 Jul;132(7):2069-2086. doi: 10.1007/s00122-019-03338-9. Epub 2019 Apr 5.
6
Nuclear gene affecting greening in virescent peanut leaves.
Plant Physiol. 1972 Jun;49(6):972-6. doi: 10.1104/pp.49.6.972.
7
Characterization of a virescent chloroplast mutant of tobacco.
Plant Physiol. 1987 Apr;83(4):920-5. doi: 10.1104/pp.83.4.920.
9
Spontaneous chlorophyll mutants of Pennisetum americanum: Genetics and chlorophyll quantities.
Theor Appl Genet. 1980 May;56(3):137-43. doi: 10.1007/BF00265084.
10
Fine Mapping of Virescent Leaf Gene v-1 in Cucumber (Cucumis sativus L.).
Int J Mol Sci. 2016 Sep 22;17(10):1602. doi: 10.3390/ijms17101602.

引用本文的文献

1
Improvement in the photoprotective capability benefits the productivity of a yellow-green wheat mutant in N-deficient conditions.
Photosynthetica. 2022 Sep 20;60(4):476-488. doi: 10.32615/ps.2022.041. eCollection 2022.
3
Identification and characterization of a temperature sensitive chlorotic soybean mutant.
bioRxiv. 2024 Feb 3:2024.02.02.578604. doi: 10.1101/2024.02.02.578604.
4
Growth Quality and Development of Olive Plants Cultured In-Vitro under Different Illumination Regimes.
Plants (Basel). 2021 Oct 18;10(10):2214. doi: 10.3390/plants10102214.
5
Perspectives on improving light distribution and light use efficiency in crop canopies.
Plant Physiol. 2021 Feb 25;185(1):34-48. doi: 10.1093/plphys/kiaa006.
6
Fine Mapping and Transcriptome Analysis of Virescent Leaf Gene in Cucumber ( L.).
Front Plant Sci. 2020 Sep 25;11:570817. doi: 10.3389/fpls.2020.570817. eCollection 2020.
7
Photosynthesis, Light Use Efficiency, and Yield of Reduced-Chlorophyll Soybean Mutants in Field Conditions.
Front Plant Sci. 2017 Apr 18;8:549. doi: 10.3389/fpls.2017.00549. eCollection 2017.
8
Fine Mapping of Virescent Leaf Gene v-1 in Cucumber (Cucumis sativus L.).
Int J Mol Sci. 2016 Sep 22;17(10):1602. doi: 10.3390/ijms17101602.
9
Isolation and initial characterization of virescent mutants of Arabidopsis thaliana.
Photosynth Res. 1995 May;44(1-2):75-9. doi: 10.1007/BF00018298.
10
Characterization of a virescent chloroplast mutant of tobacco.
Plant Physiol. 1987 Apr;83(4):920-5. doi: 10.1104/pp.83.4.920.

本文引用的文献

2
The Inheritance of Virescent Yellow and Red Plant Colors in Cotton.
Genetics. 1933 Jul;18(4):329-34. doi: 10.1093/genetics/18.4.329.
3
Two categories of c/c ratios for higher plants.
Plant Physiol. 1971 Mar;47(3):380-4. doi: 10.1104/pp.47.3.380.
4
A Simple Technique for the Rapid Determination of Plant CO(2) Compensation Points.
Plant Physiol. 1970 Dec;46(6):850-1. doi: 10.1104/pp.46.6.850.
5
Photochemical characteristics in a soybean mutant.
Plant Physiol. 1970 Nov;46(5):699-704. doi: 10.1104/pp.46.5.699.
6
Chloroplast composition and structure differences in a soybean mutant.
Plant Physiol. 1970 Nov;46(5):692-8. doi: 10.1104/pp.46.5.692.
7
Photosynthetic Studies on a Pea-mutant Deficient in Chlorophyll.
Plant Physiol. 1969 Sep;44(9):1310-20. doi: 10.1104/pp.44.9.1310.
9
Investigation on photorespiration with a sensitive C-assay.
Plant Physiol. 1968 Nov;43(11):1829-37. doi: 10.1104/pp.43.11.1829.
10
Characteristics of a virescent cotton mutant.
Plant Physiol. 1968 Oct;43(10):1611-6. doi: 10.1104/pp.43.10.1611.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验