Suppr超能文献

相似文献

1
Perspectives on improving light distribution and light use efficiency in crop canopies.
Plant Physiol. 2021 Feb 25;185(1):34-48. doi: 10.1093/plphys/kiaa006.
2
Perspectives on improving photosynthesis to increase crop yield.
Plant Cell. 2024 Oct 3;36(10):3944-3973. doi: 10.1093/plcell/koae132.
4
N uptake and distribution in crops: an agronomical and ecophysiological perspective.
J Exp Bot. 2002 Apr;53(370):789-99. doi: 10.1093/jexbot/53.370.789.
5
Natural genetic variation in photosynthesis: an untapped resource to increase crop yield potential?
Plant J. 2020 Feb;101(3):518-528. doi: 10.1111/tpj.14568. Epub 2019 Nov 13.
7
Simultaneous improvement in productivity, water use, and albedo through crop structural modification.
Glob Chang Biol. 2014 Jun;20(6):1955-67. doi: 10.1111/gcb.12567. Epub 2014 Apr 3.
8
Photosynthesis in the fleeting shadows: an overlooked opportunity for increasing crop productivity?
Plant J. 2020 Feb;101(4):874-884. doi: 10.1111/tpj.14663. Epub 2020 Feb 24.
9
Improving photosynthetic efficiency for greater yield.
Annu Rev Plant Biol. 2010;61:235-61. doi: 10.1146/annurev-arplant-042809-112206.
10
Improving yield by exploiting mechanisms underlying natural variation of photosynthesis.
Curr Opin Biotechnol. 2012 Apr;23(2):215-20. doi: 10.1016/j.copbio.2011.12.012. Epub 2012 Jan 30.

引用本文的文献

3
Synthetic crassulacean acid metabolism (SynCAM) for improving water-use efficiency in plants.
Philos Trans R Soc Lond B Biol Sci. 2025 May 29;380(1927):20240249. doi: 10.1098/rstb.2024.0249.
6
Synthetic biology in plants.
Plant Biotechnol (Tokyo). 2024 Sep 25;41(3):173-193. doi: 10.5511/plantbiotechnology.24.0630b.
8
Improvement in the photoprotective capability benefits the productivity of a yellow-green wheat mutant in N-deficient conditions.
Photosynthetica. 2022 Sep 20;60(4):476-488. doi: 10.32615/ps.2022.041. eCollection 2022.
9
Light quality, oxygenic photosynthesis and more.
Photosynthetica. 2022 Jan 6;60(1):25-28. doi: 10.32615/ps.2021.055. eCollection 2022.
10
Light distribution at the fruit tree-crop interface and consequences for yield in sloping upland agroforestry.
Heliyon. 2024 Sep 29;10(19):e38655. doi: 10.1016/j.heliyon.2024.e38655. eCollection 2024 Oct 15.

本文引用的文献

2
Harvesting far-red light: Functional integration of chlorophyll f into Photosystem I complexes of Synechococcus sp. PCC 7002.
Biochim Biophys Acta Bioenerg. 2020 Aug 1;1861(8):148206. doi: 10.1016/j.bbabio.2020.148206. Epub 2020 Apr 17.
5
Photosynthesis in the fleeting shadows: an overlooked opportunity for increasing crop productivity?
Plant J. 2020 Feb;101(4):874-884. doi: 10.1111/tpj.14663. Epub 2020 Feb 24.
6
Consequences of the reduction of the Photosystem II antenna size on the light acclimation capacity of Arabidopsis thaliana.
Plant Cell Environ. 2020 Apr;43(4):866-879. doi: 10.1111/pce.13701. Epub 2020 Feb 5.
7
The zeaxanthin epoxidase is degraded along with the D1 protein during photoinhibition of photosystem II.
Plant Direct. 2019 Dec 1;3(11):e00185. doi: 10.1002/pld3.185. eCollection 2019 Nov.
8
Genetic strategies for improving crop yields.
Nature. 2019 Nov;575(7781):109-118. doi: 10.1038/s41586-019-1679-0. Epub 2019 Nov 6.
9
Far-Red Light Accelerates Photosynthesis in the Low-Light Phases of Fluctuating Light.
Plant Cell Physiol. 2020 Jan 1;61(1):192-202. doi: 10.1093/pcp/pcz191.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验