Suppr超能文献

越冬杜鹃花花芽中的过冷却现象。

Supercooling in overwintering azalea flower buds.

作者信息

George M F, Burke M J, Weiser C J

机构信息

Laboratory of Plant Hardiness, Department of Horticultural Science, University of Minnesota, St. Paul, Minnesota 55101.

出版信息

Plant Physiol. 1974 Jul;54(1):29-35. doi: 10.1104/pp.54.1.29.

Abstract

Differential thermal analysis and nuclear magnetic resonance spectroscopy experiments on whole flower buds and excised floral primordia of azalea (Rhododendron kosterianum, Schneid.) proved that supercooling is the mode of freezing resistance (avoidance) of azalea flower primordia. Increase in the linewidth of nuclear magnetic resonance spectra for water upon thawing supports the view that injury to the primordia occurs at the moment of freezing. Nonliving primordia freeze at the same temperatures as living primordia, indicating that morphological features of primordial tissues are a key factor in freezing avoidance of dormant azalea flower primordia. Differential thermal analyses was used to study the relationship of cooling rate to the freezing points of floral primordia in whole flower buds. At a cooling rate of 8.5 C per hour, primordia in whole buds froze at about the same subfreezing temperatures as did excised primordia cooled at 37 C per hour. At more rapid cooling rates primordia in intact buds froze at higher temperatures.

摘要

对杜鹃(羊踯躅,施奈德)的整个花芽和离体花原基进行差示热分析和核磁共振光谱实验,结果证明过冷是杜鹃花原基的抗冻(避免结冰)方式。解冻时水的核磁共振谱线宽增加,这支持了原基在结冰瞬间受到损伤的观点。无生命的原基与有生命的原基在相同温度下结冰,这表明原基组织的形态特征是休眠杜鹃花原基避免结冰的关键因素。利用差示热分析研究了冷却速率与整个花芽中花原基冰点的关系。以每小时8.5℃的冷却速率,整芽中的原基在大约与以每小时37℃冷却的离体原基相同的亚冰点温度下结冰。在更快的冷却速率下,完整芽中的原基在更高的温度下结冰。

相似文献

1
Supercooling in overwintering azalea flower buds.
Plant Physiol. 1974 Jul;54(1):29-35. doi: 10.1104/pp.54.1.29.
2
Supercooling in overwintering azalea flower buds: additional freezing parameters.
Plant Physiol. 1977 Feb;59(2):326-8. doi: 10.1104/pp.59.2.326.
4
Investigating properties of sweet cherry (Prunus avium) flower buds that help promote freezing avoidance by supercooling.
Plant Biol (Stuttg). 2024 Oct;26(6):1067-1078. doi: 10.1111/plb.13697. Epub 2024 Aug 21.
5
Mechanism of freezing resistance in eco-dormant birch buds under winter subzero temperatures.
Tree Physiol. 2021 Apr 8;41(4):606-618. doi: 10.1093/treephys/tpz122.
6
Supercooling characteristics of isolated peach flower bud primordia.
Plant Physiol. 1989 Apr;89(4):1031-4. doi: 10.1104/pp.89.4.1031.
8
Ice nucleation activity in various tissues of Rhododendron flower buds: their relevance to extraorgan freezing.
Front Plant Sci. 2015 Mar 25;6:149. doi: 10.3389/fpls.2015.00149. eCollection 2015.
9
Freezing behaviors in leaf buds of cold-hardy conifers visualized by NMR microscopy.
Tree Physiol. 1998 Jul;18(7):451-458. doi: 10.1093/treephys/18.7.451.
10
Freezing behaviours in wintering Cornus florida flower bud tissues revisited using MRI.
Plant Cell Environ. 2016 Dec;39(12):2663-2675. doi: 10.1111/pce.12813. Epub 2016 Oct 13.

引用本文的文献

1
Acquisition of Freezing Tolerance in Ait. Is a Multi-Factor Process Involving the Presence of an Ice Barrier at the Bud Base.
Front Plant Sci. 2022 May 4;13:891488. doi: 10.3389/fpls.2022.891488. eCollection 2022.
2
Freezing stress survival mechanisms in Vaccinium macrocarpon Ait. terminal buds.
Tree Physiol. 2020 Jun 30;40(7):841-855. doi: 10.1093/treephys/tpaa028.
3
7
Xylem development in prunus flower buds and the relationship to deep supercooling.
Plant Physiol. 1984 Apr;74(4):862-5. doi: 10.1104/pp.74.4.862.
8
Endosperm and pericarp involvement in the supercooling of imbibed lettuce seeds.
Plant Physiol. 1982 Nov;70(5):1571-3. doi: 10.1104/pp.70.5.1571.
9
Properties of peach flower buds which facilitate supercooling.
Plant Physiol. 1982 Nov;70(5):1475-9. doi: 10.1104/pp.70.5.1475.
10
Deep undercooling of tissue water and winter hardiness limitations in timberline flora.
Plant Physiol. 1981 Jul;68(1):111-4. doi: 10.1104/pp.68.1.111.

本文引用的文献

1
Liquid water in frozen tissue: study by nuclear magnetic resonance.
Science. 1966 Jan 21;151(3708):324-5. doi: 10.1126/science.151.3708.324.
2
Evidence for the existence of a minimum of two phases of ordered water in skeletal muscle.
Nature. 1969 May 24;222(5195):747-50. doi: 10.1038/222747a0.
3
Hydration of macromolecules.
Science. 1969 Mar 21;163(3873):1329-31. doi: 10.1126/science.163.3873.1329.
4
Nuclear magnetic resonance and the state of water in cells.
Prog Biophys Mol Biol. 1971;23:1-20. doi: 10.1016/0079-6107(71)90015-0.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验