Dai Y R, Galston A W
Department of Biology, Yale University, New Haven, Connecticut 06511.
Plant Physiol. 1981 Feb;67(2):266-9. doi: 10.1104/pp.67.2.266.
The specific activity of arginine decarboxylase (ADC; l-arginine carboxylase; EC 4.1.1.19) rises steadily over an 8 hour experimental period in the growing buds and subapical epicotyl internodes of 6-day-old totally etiolated pea seedlings. Treatment with red light (R) completely annuls this rise in epicotyls but increases it in buds, thus paralleling the opposite effects of R on the growth of these two organs. Far red light (FR) reverses both effects of R on ADC and is, in turn, reversed by R, indicating phytochrome control. Effects in both organs are clearly seen within 2 hours. By 6 hours after R, the post-irradiation rise in ADC specific activity in buds is 3 times greater than that of the dark controls. Over the same period, ADC specific activity in epicotyls is inhibited by 56% relative to dark controls, reflecting zero net change after R and a continued rise in the dark. Cycloheximide inhibits the rise in ADC activity in both rapidly growing organs (epicotyls in dark and buds after R) but is without effect in both slower growing organs. Actinomycin D inhibits only in dark grown epicotyls, whereas chloramphenicol produces no inhibition in any system tested.ADC is the first enzyme to show a two-way, organ-specific response to phytochrome conversion from Pr to Pfr. This finding is discussed in relation to the growing evidence that polyamines formed from arginine may be important growth regulators in plants, as well as in microbial and animal cells.
在6日龄完全黄化豌豆幼苗的生长芽和亚顶端上胚轴节间中,精氨酸脱羧酶(ADC;L-精氨酸羧化酶;EC 4.1.1.19)的比活性在8小时的实验期内稳步上升。用红光(R)处理完全消除了上胚轴中这种活性的上升,但在芽中却使其增加,从而与R对这两个器官生长的相反作用相似。远红光(FR)逆转了R对ADC的两种作用,而R又能逆转FR的作用,表明这是由光敏色素控制的。在两个器官中,2小时内就能清楚地看到这种作用。在R处理6小时后,芽中照射后ADC比活性的上升比黑暗对照高3倍。在同一时期,上胚轴中ADC的比活性相对于黑暗对照被抑制了56%,这反映出R处理后净变化为零,而在黑暗中其活性持续上升。环己酰亚胺抑制了两个快速生长器官(黑暗中的上胚轴和R处理后的芽)中ADC活性的上升,但对两个生长较慢的器官没有影响。放线菌素D仅在黑暗生长的上胚轴中起抑制作用,而氯霉素在任何测试系统中均无抑制作用。ADC是第一个显示出对光敏色素从红光吸收型(Pr)向远红光吸收型(Pfr)转化产生双向、器官特异性反应的酶。结合越来越多的证据讨论了这一发现,这些证据表明由精氨酸形成的多胺可能是植物以及微生物和动物细胞中重要的生长调节因子。