Terry N
Department of Plant and Soil Biology, University of California, Berkeley, California 94720.
Plant Physiol. 1983 Apr;71(4):855-60. doi: 10.1104/pp.71.4.855.
Using iron stress to reduce the total amount of light-harvesting and electron transport components per unit leaf area, the influence of light-harvesting and electron transport capacity on photosynthesis in sugar beet (Beta vulgaris L. cv F58-554H1) leaves was explored by monitoring net CO(2) exchange rate (P) in relation to changes in the content of Chl.In most light/CO(2) environments, and especially those with high light (>/=1000 microeinsteins photosynthetically active radiation per square meter per second) and high CO(2) (>/=300 microliters CO(2) per liter air), P per area was positively correlated with changes in Chl (a + b) content (used here as an index of the total amount of light-harvesting and electron transport components). This positive correlation of P per area with Chl per area was obtained not only with Fe-deficient plants, but also over the normal range of variation in Chl contents found in healthy, Fe-sufficient plants. For example, light-saturated P per area at an ambient CO(2) concentration close to normal atmospheric levels (300 microliters CO(2) per liter air) increased by 36% with increase in Chl over the normal range, i.e. from 40 to 65 micrograms Chl per square centimeter. Iron deficiency-mediated changes in Chl content did not affect dark respiration rate or the CO(2) compensation point. The results suggest that P per area of sugar beet may be colimited by light-harvesting and electron transport capacity (per leaf area) even when CO(2) is limiting photosynthesis as occurs under field conditions.
利用铁胁迫降低单位叶面积上光捕获和电子传递组分的总量,通过监测净二氧化碳交换率(P)相对于叶绿素含量变化,探讨了光捕获和电子传递能力对甜菜(Beta vulgaris L. cv F58 - 554H1)叶片光合作用的影响。在大多数光照/二氧化碳环境中,尤其是高光强(≥1000微爱因斯坦光合有效辐射每平方米每秒)和高二氧化碳(≥300微升二氧化碳每升空气)环境下,单位面积的P与叶绿素(a + b)含量的变化呈正相关(此处用作光捕获和电子传递组分总量的指标)。单位面积的P与单位面积的叶绿素之间的这种正相关不仅在缺铁植物中得到,而且在健康、铁充足植物中叶绿素含量的正常变化范围内也得到。例如,在接近正常大气水平(300微升二氧化碳每升空气)的环境二氧化碳浓度下,随着叶绿素在正常范围内增加,即从每平方厘米40微克增加到65微克,单位面积的光饱和P增加了36%。缺铁介导的叶绿素含量变化不影响暗呼吸速率或二氧化碳补偿点。结果表明,即使在田间条件下二氧化碳限制光合作用时,甜菜的单位面积P可能也受到光捕获和电子传递能力(每叶面积)的共同限制。