Institut für Pflanzenernährung, Universität Hohenheim, Postfach 70 05 62, 7000 Stuttgart 70, Federal Republic of Germany.
Plant Physiol. 1986 Jan;80(1):175-80. doi: 10.1104/pp.80.1.175.
Roots of grasses in response to iron deficiency markedly increase the release of chelating substances (;phytosiderophores') which are highly effective in solubilization of sparingly soluble inorganic Fe(III) compounds by formation of Fe(III)phytosiderophores. In barley (Hordeum vulgare L.), the rate of iron uptake from Fe(III)phytosiderophores is 100 to 1000 times faster than the rate from synthetic Fe chelates (e.g. Fe ethylenediaminetetraacetate) or microbial Fe siderophores (e.g. ferrichrome). Reduction of Fe(III) is not involved in the preferential iron uptake from Fe(III)phytosiderophores by barley. This is indicated by experiments with varied pH, addition of bicarbonate or of a strong chelator for Fe(II) (e.g. batho-phenanthrolinedisulfonate). The results indicate the existence of a specific uptake system for Fe(III)phytosiderophores in roots of barley and all other graminaceous species. In contrast to grasses, cucumber plants (Cucumis sativus L.) take up iron from Fe(III)phytosiderophores at rates similar to those from synthetic Fe chelates. Furthermore, under Fe deficiency in cucumber, increased rates of uptake of Fe(III)phytosiderophores are based on the same mechanism as for synthetic Fe chelates, namely enhanced Fe(III) reduction and chelate splitting. Two strategies are evident from the experiments for the acquisition of iron by plants under iron deficiency. Strategy I (in most nongraminaceous species) is characterized by an inducible plasma membrane-bound reductase and enhancement of H(+) release. Strategy II (in grasses) is characterized by enhanced release of phytosiderophores and by a highly specific uptake system for Fe(III)phytosiderophores. Strategy II seems to have several ecological advantages over Strategy I such as solubilization of sparingly soluble inorganic Fe(III) compounds in the rhizosphere, and less inhibition by high pH. The principal differences in the two strategies have to be taken into account in screening methods for resistance to ;lime chlorosis'.
禾本科植物的根系在缺铁时会显著增加螯合物质(植物铁载体)的释放,这些物质能有效地将难溶的无机三价铁化合物溶解,形成三价铁植物铁载体。在大麦(Hordeum vulgare L.)中,从三价铁植物铁载体中吸收铁的速度比从合成铁螯合物(如乙二胺四乙酸铁)或微生物铁载体(如高铁载体)中吸收铁的速度快 100 到 1000 倍。大麦从三价铁植物铁载体中优先吸收铁并不涉及三价铁的还原。这可以通过在不同 pH 值下的实验、添加碳酸氢盐或强二价铁螯合剂(如浴-邻菲咯啉二亚磺酸盐)来证明。这些结果表明,在大麦和所有其他禾本科植物的根中存在一种特定的三价铁植物铁载体吸收系统。与禾本科植物不同,黄瓜植物(Cucumis sativus L.)从三价铁植物铁载体中吸收铁的速度与从合成铁螯合物中吸收铁的速度相似。此外,在黄瓜缺铁时,三价铁植物铁载体吸收速率的增加基于与合成铁螯合物相同的机制,即增强三价铁的还原和螯合物的分解。这些实验表明,植物在缺铁条件下有两种获取铁的策略。策略 I(在大多数非禾本科植物中)的特点是诱导质膜结合的还原酶和增强 H+的释放。策略 II(在禾本科植物中)的特点是增强植物铁载体的释放和对三价铁植物铁载体的高度特异性吸收系统。与策略 I 相比,策略 II 似乎具有几个生态优势,如在根际中溶解难溶性无机三价铁化合物,以及较少受高 pH 值的抑制。在筛选抗“石灰性缺铁黄化病”的方法时,需要考虑这两种策略的主要差异。