Plant Physiology Institute, Beltsville, Maryland 20705.
Plant Physiol. 1986 Mar;80(3):676-84. doi: 10.1104/pp.80.3.676.
Previously, C Baysdorfer and JM Robinson (1985 Plant Physiol 77: 318-320) demonstrated that, in a reconstituted spinach chloroplast system, NADP photoreduction functioning at most maximal rate and reductant demand, was the successful competitor with NO(2) (-) photoreduction for reduced ferredoxin. This resulted in a repression of NO(2) (-) reduction until all NADP available had been almost totally reduced. Further experiments, employing isolated, intact spinach leaf plastids and soybean leaf mesophyll cells, were conducted to examine competition for reductant between CO(2) and NO(2) (-) photoassimilation, in situ. In isolated, intact plastid preparations, regardless of whether the demand for reductant by CO(2) photoassimilation was high (5 millimolar ;CO(2)') with rates of CO(2) fixation in the range 40 to 90 micromoles CO(2) fixed per hour per milligram chlorophyll, low (0.5 millimolar ;CO(2)') with rates in the range 5 to 8 micromoles CO(2) per hour per milligram chlorophyll, or zero (no ;CO(2)'), NO(2) (-) photoreduction displayed equal rates in the range of 8 to 22 micromoles per hour per milligram chlorophyll. In the absence of ;CO(2)', but in the presence of saturating white light, 3-phosphoglycerate photoreduction at rates of 82 to 127 micromoles per hour per milligram chlorophyll did not repress, and occasionally stimulated concomitant rates of NO(2) (-) reduction which ranged from 23.4 to 38.5. Conversely, in plastid preparations, NO(2) (-) at levels of 50 to 100 micromolar, stimulated plastid CO(2) fixation when ;CO(2)' was saturating with respect to carboxylation. Further, levels of NO(2) (-) in the range 250 to 2500 micromolar, stimulated soybean leaf mesophyll cell net CO(2) fixation as much as 1.5-fold if ;CO(2)' was saturating with respect to CO(2) fixation. It appeared likely that, in high light in vivo, CO(2) and NO(2) (-) photoassimilatory processes are not forced to intercompete for reduced ferredoxin in the intact chloroplast.
先前,C Baysdorfer 和 JM Robinson(1985 年,植物生理学 77:318-320)证明,在一个再组成的菠菜叶绿体系统中,NADP 光还原作用以最大速率和还原剂需求运作,是与 NO2-(-)光还原作用竞争还原型铁氧还蛋白的成功竞争者。这导致 NO2-(-)还原作用的抑制,直到所有可用的 NADP 几乎完全还原。进一步的实验,采用分离的、完整的菠菜叶叶绿体和大豆叶叶肉细胞,在体内检查 CO2 和 NO2-(-)光同化之间还原剂的竞争。在分离的、完整的叶绿体制剂中,无论 CO2 光同化对还原剂的需求是高的(5 毫摩尔;CO2'),CO2 固定速率在 40 到 90 微摩尔 CO2 每小时每毫克叶绿素固定,低的(0.5 毫摩尔;CO2'),CO2 固定速率在 5 到 8 微摩尔 CO2 每小时每毫克叶绿素固定,或零(无;CO2'),NO2-(-)光还原作用以 8 到 22 微摩尔每小时每毫克叶绿素的速率显示出相等的速率。在没有;CO2'的情况下,但在饱和白光存在的情况下,3-磷酸甘油酸光还原作用以 82 到 127 微摩尔 CO2 每小时每毫克叶绿素的速率没有抑制,并且偶尔刺激同时发生的 NO2-(-)还原作用速率,范围从 23.4 到 38.5。相反,在叶绿体制剂中,NO2-(-)在 50 到 100 微摩尔的水平,当 CO2'对羧化作用饱和时,刺激叶绿体 CO2 固定。此外,如果 CO2'对 CO2 固定饱和,NO2-(-)在 250 到 2500 微摩尔的范围内,刺激大豆叶叶肉细胞净 CO2 固定多达 1.5 倍。在高光体内,似乎 CO2 和 NO2-(-)光同化过程不会被迫在完整的叶绿体中相互竞争还原型铁氧还蛋白。