Department of Vegetable Crops, University of California, Davis, California 95616.
Plant Physiol. 1989 Sep;91(1):352-6. doi: 10.1104/pp.91.1.352.
A custom oxygen analyzer in conjunction with an infrared carbon dioxide analyzer and humidity sensors permitted simultaneous measurements of oxygen, carbon dioxide, and water vapor fluxes from the shoots of intact barley plants (Hordeum vulgare L. cv Steptoe). The oxygen analyzer is based on a calciazirconium sensor and can resolve concentration differences to within 2 microliters per liter against the normal background of 210,000 microliters per liter. In wild-type plants receiving ammonium as their sole nitrogen source or in nitrate reductase-deficient mutants, photosynthetic and respiratory fluxes of oxygen equaled those of carbon dioxide. By contrast, wild-type plants exposed to nitrate had unequal oxygen and carbon dioxide fluxes: oxygen evolution at high light exceeded carbon dioxide consumption by 26% and carbon dioxide evolution in the dark exceeded oxygen consumption by 25%. These results indicate that a substantial portion of photosynthetic electron transport or respiration generates reductant for nitrate assimilation rather than for carbon fixation or mitochondrial electron transport.
一种定制的氧气分析仪与红外二氧化碳分析仪和湿度传感器相结合,可同时测量完整大麦植株(Hordeum vulgare L. cv Steptoe)的茎部氧气、二氧化碳和水蒸气通量。该氧气分析仪基于氧化钙-氧化锆传感器,可在 210000 微升/升的正常背景下分辨出 2 微升/升以内的浓度差异。在以铵作为唯一氮源的野生型植物或硝酸还原酶缺陷突变体中,光合作用和呼吸作用的氧气通量与二氧化碳通量相等。相比之下,暴露在硝酸盐中的野生型植物的氧气和二氧化碳通量并不相等:高光下的氧气释放超过了 26%的二氧化碳消耗,黑暗中的二氧化碳释放超过了 25%的氧气消耗。这些结果表明,相当一部分的光合作用电子传递或呼吸作用为硝酸盐同化而不是为碳固定或线粒体电子传递生成还原剂。