Michigan State University-Department of Energy Plant Research Laboratory, East Lansing, Michigan 48824.
Plant Physiol. 1991 Oct;97(2):670-6. doi: 10.1104/pp.97.2.670.
It has previously been shown that the abscisic acid (ABA)-deficient flacca and sitiens mutants of tomato are impaired in ABA-aldehyde oxidation and accumulate trans-ABA-alcohol as a result of the biosynthetic block (IB Taylor, RST Linforth, RJ Al-Naieb, WR Bowman, BA Marples [1988] Plant Cell Environ 11: 739-745). Here we report that the flacca and sitiens mutants accumulate trans-ABA and trans-ABA glucose ester and that this accumulation is due to trans-ABA biosynthesis. (18)O labeling of water-stressed wild-type and mutant tomato leaves and analysis of [(18)O]ABA by tandem mass spectrometry show that the tomato mutants synthesize a significant percentage of their ABA and trans-ABA as [(18)O]ABA with two (18)O atoms in the carboxyl group. We further show, by feeding experiments with [(2)H(6)]ABA-alcohol and (18)O(2), that this doubly-carboxyl-labeled ABA is synthesized from [(18)O]ABA-alcohol with incorporation of molecular oxygen. In vivo inhibition of [(2)H(6)]ABA-alcohol oxidation by carbon monoxide establishes the involvement of a P-450 monooxygenase. Likewise, carbon monoxide inhibits the synthesis of doubly-carboxyl-labeled ABA in (18)O-labeling experiments. This minor shunt pathway from ABA-aldehyde to ABA-alcohol to ABA operates in all plants examined. For the ABA-deficient mutants impaired in ABA-aldehyde oxidation, this shunt pathway is an important source of ABA and is physiologically significant.
先前的研究表明,番茄的 ABA 缺陷型 flacca 和 sitiens 突变体在 ABA-醛氧化过程中受到损伤,并且由于生物合成受阻而积累反式 ABA-醇(IB Taylor,RST Linforth,RJ Al-Naieb,WR Bowman,BA Marples [1988] Plant Cell Environ 11: 739-745)。在这里,我们报告 flacca 和 sitiens 突变体积累反式 ABA 和反式 ABA 葡萄糖酯,并且这种积累是由于反式 ABA 的生物合成。对水分胁迫下的野生型和突变体番茄叶片进行 18O 标记水和 [(18)O]ABA 的串联质谱分析表明,番茄突变体合成了相当比例的 ABA 和反式 ABA,其羧基中含有两个 (18)O 原子。我们通过用 [(2)H(6)]ABA-醇和 (18)O(2)进行饲喂实验进一步表明,这种双羧基标记的 ABA 是由 [(18)O]ABA-醇合成的,其中分子氧被掺入。一氧化碳在体内抑制 [(2)H(6)]ABA-醇的氧化,证明了 P-450 单加氧酶的参与。同样,一氧化碳抑制 (18)O 标记实验中双羧基标记 ABA 的合成。这条从 ABA-醛到 ABA-醇到 ABA 的次要旁路途径在所有被检查的植物中都存在。对于在 ABA-醛氧化过程中受损的 ABA 缺陷型突变体,这条旁路途径是 ABA 的重要来源,具有生理意义。