Department of Biological Sciences, University College of Wales, SY23 3DA, Aberystwyth, Dyfed, UK.
Planta. 1991 Jan;183(2):237-43. doi: 10.1007/BF00197794.
A mutant of Nicotiana plumbaginifolia, CKR1, isolated on the basis of its enhanced resistance to cytokinins was found to have a greater tendency to wilt than the wild type (Blonstein et al., 1991, Planta 183, 244-250). Further characterisation has shown that the wiltiness in the mutant is not caused by an insensitivity to abscisic acid (ABA) because the external application of ABA leads to stomatal closure and phenotypic reversion. The basal ABA level in the mutant is < 20% of that in the wild type. Following stress, the ABA level in wild-type leaves increases by approx 9-to 10-fold while the mutant shows only a slight increase. This deficiency in ABA is unlikely to be the consequence of accelerated catabolism as the levels of two major metabolites of ABA, phaseic and dihydrophaseic acid, are also much reduced in the mutant. The qualitative and quantitative distributions of carotenoids, the presumed presursors of ABA, are the same for the leaves of both wild type and mutant. Biosynthesis of ABA at the C15 level was investigated by feeding xanthoxin (Xan) to detached leaves. Wild-type leaves convert between 9-19% of applied Xan to ABA while the mutant converts less than 1%. The basal level of trans-ABA-alcohol (t-ABA-alc) is 3-to 10-fold greater in the mutant and increases by a further 2.5-to 6.0-fold after stress. This indicates that the lesion in the wilty mutant of N. plumbaginifolia affects the conversion of ABA-aldehyde to ABA, as in the flacca and sitiens mutants of tomato and the droopy mutant of potato (Taylor et al., 1988, Plant Cell Environ. 11, 739-745; Duckham et al., 1989, J. Exp. Bot. 217, 901-905). Wild-type tomato and N. plumbaginifolia leaves can convert trans-Xan into t-ABA-alc, and Xan into ABA, while those of flacca and the wilty N. plumbaginifolia mutant convert both Xan and t-Xan to t-ABA-alc.
基于细胞分裂素抗性增强而分离得到的菘蓝斑驳突变体(Nicotiana plumbaginifolia)比野生型更容易萎蔫(Blonstein 等人,1991,Planta 183,244-250)。进一步的特征表明,突变体的萎蔫不是由于对脱落酸(ABA)不敏感引起的,因为外源施加 ABA 会导致气孔关闭和表型逆转。突变体中 ABA 的基础水平<野生型的 20%。胁迫后,野生型叶片中的 ABA 水平增加约 9-10 倍,而突变体仅略有增加。这种 ABA 的缺乏不太可能是由于加速分解代谢引起的,因为 ABA 的两种主要代谢物,黄氧酸和二氢黄氧酸的水平在突变体中也大大降低。类胡萝卜素(ABA 的假定前体)的定性和定量分布在野生型和突变体的叶片中是相同的。通过向离体叶片中添加黄氧酸(Xan)研究了 C15 水平的 ABA 生物合成。野生型叶片将应用的 Xan 转化为 ABA 的比例在 9-19%之间,而突变体的转化率低于 1%。突变体中反式-ABA-醇(t-ABA-alc)的基础水平高出 3-10 倍,胁迫后进一步增加 2.5-6.0 倍。这表明菘蓝斑驳突变体中的损伤影响了 ABA-醛向 ABA 的转化,就像番茄的 flacca 和 sitiens 突变体以及马铃薯的 droopy 突变体一样(Taylor 等人,1988,Plant Cell Environ. 11,739-745;Duckham 等人,1989,J. Exp. Bot. 217,901-905)。野生型番茄和菘蓝叶片可以将反式-Xan 转化为 t-ABA-alc,将 Xan 转化为 ABA,而 flacca 和菘蓝斑驳突变体则将 Xan 和 t-Xan 都转化为 t-ABA-alc。