Suppr超能文献

Computational study of carbon atom (3P and 1D) reaction with CH2O. Theoretical evaluation of 1B1 methylene production by C (1D).

作者信息

Joo Hyun, Shevlin Philip B, McKee Michael L

机构信息

Department of Chemistry and Biochemistry, Auburn University, Auburn, Alabama 36849, USA.

出版信息

J Am Chem Soc. 2006 May 10;128(18):6220-30. doi: 10.1021/ja060216m.

Abstract

Singlet and triplet free energy surfaces for the reactions of C atom ((3)P and (1)D) with CH(2)O are studied computationally to evaluate the excited singlet ((1)B(1)) methylene formation from deoxygenation of CH(2)O by C ((1)D) atom as suggested by Shevlin et al. Carbon atoms can react by addition to the oxygen lone pair or to the C=O double bond on both the triplet and singlet surfaces. Triplet C ((3)P) atoms will deoxygenate to give CO plus CH(2) ((3)B(1)) as the major products, while singlet C ((1)D) reactions will form ketene and CO plus CH(2) ((1)A(1)). No definitive evidence of the formation of excited singlet ((1)B(1)) methylene was found on the singlet free energy surface. A conical intersection between the (1)A' and (1)A' ' surfaces located near an exit channel may play a role in product formation. The suggested (1)B(1) state of methylene may form via the (1)A' ' surface only if dynamic effects are important. In an effort to interpret experimental observation of products trapped by (Z)-2-butene, formation of cis- and trans-1,2-dimethylcyclopropane is studied computationally. The results suggests that "hot" ketene may react with (Z)-2-butene nonstereospecifically.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验