Suppr超能文献

光敏色素的结构与信号传导机制。

Phytochrome structure and signaling mechanisms.

作者信息

Rockwell Nathan C, Su Yi-Shin, Lagarias J Clark

机构信息

Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA.

出版信息

Annu Rev Plant Biol. 2006;57:837-58. doi: 10.1146/annurev.arplant.56.032604.144208.

Abstract

Phytochromes are a widespread family of red/far-red responsive photoreceptors first discovered in plants, where they constitute one of the three main classes of photomorphogenesis regulators. All phytochromes utilize covalently attached bilin chromophores that enable photoconversion between red-absorbing (P(r)) and far-red-absorbing (P(fr)) forms. Phytochromes are thus photoswitchable photosensors; canonical phytochromes have a conserved N-terminal photosensory core and a C-terminal regulatory region, which typically includes a histidine-kinase-related domain. The discovery of new bacterial and cyanobacterial members of the phytochrome family within the last decade has greatly aided biochemical and structural characterization of this family, with the first crystal structure of a bacteriophytochrome photosensory core appearing in 2005. This structure and other recent biochemical studies have provided exciting new insights into the structure of phytochrome, the photoconversion process that is central to light sensing, and the mechanism of signal transfer by this important family of photoreceptors.

摘要

光敏色素是一类广泛存在的对红光/远红光有响应的光感受器,最初在植物中被发现,它们是光形态建成调节因子的三大主要类别之一。所有光敏色素都利用共价连接的胆色素发色团,使吸收红光的(P(r))形式和吸收远红光的(P(fr))形式之间发生光转换。因此,光敏色素是可光开关的光传感器;典型的光敏色素具有保守的N端光感核心和C端调节区域,该区域通常包括一个组氨酸激酶相关结构域。在过去十年中,植物色素家族新的细菌和蓝细菌成员的发现极大地促进了对该家族的生化和结构表征,2005年出现了第一个细菌光敏色素光感核心的晶体结构。这一结构和其他近期的生化研究为光敏色素的结构、对光感知至关重要的光转换过程以及这一重要光感受器家族的信号传递机制提供了令人兴奋的新见解。

相似文献

1
Phytochrome structure and signaling mechanisms.
Annu Rev Plant Biol. 2006;57:837-58. doi: 10.1146/annurev.arplant.56.032604.144208.
2
A brief history of phytochromes.
Chemphyschem. 2010 Apr 26;11(6):1172-80. doi: 10.1002/cphc.200900894.
3
High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution.
J Biol Chem. 2007 Apr 20;282(16):12298-309. doi: 10.1074/jbc.M611824200. Epub 2007 Feb 23.
4
Distinct classes of red/far-red photochemistry within the phytochrome superfamily.
Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6123-7. doi: 10.1073/pnas.0902370106. Epub 2009 Apr 1.
5
Crystal structure of Pseudomonas aeruginosa bacteriophytochrome: photoconversion and signal transduction.
Proc Natl Acad Sci U S A. 2008 Sep 23;105(38):14715-20. doi: 10.1073/pnas.0806718105. Epub 2008 Sep 17.
7
Structure of the cyanobacterial phytochrome 2 photosensor implies a tryptophan switch for phytochrome signaling.
J Biol Chem. 2013 Dec 13;288(50):35714-25. doi: 10.1074/jbc.M113.510461. Epub 2013 Oct 30.
10
Ultrafast Photoconversion Dynamics of the Knotless Phytochrome Cph2.
Int J Mol Sci. 2021 Oct 2;22(19):10690. doi: 10.3390/ijms221910690.

引用本文的文献

2
Abundance and Diversity of Aerobic Anoxygenic Phototrophic Bacteria in Polar Plant Microbiomes.
Physiol Plant. 2025 Jul-Aug;177(4):e70441. doi: 10.1111/ppl.70441.
5
Circular dichroism spectroscopy reveals multiple phytochrome photoproducts in equilibrium.
Photochem Photobiol Sci. 2025 Jul 18. doi: 10.1007/s43630-025-00763-2.
6
Traits of Bathy Phytochromes and Application to Bacterial Optogenetics.
ACS Synth Biol. 2025 Aug 15;14(8):3207-3218. doi: 10.1021/acssynbio.5c00337. Epub 2025 Jul 11.
8
Structural insight into PIF6-mediated red light signal transduction of plant phytochrome B.
Cell Discov. 2025 May 22;11(1):51. doi: 10.1038/s41421-025-00802-3.
9
Structures of myxobacterial phytochrome revealed by cryo-EM using the Spotiton technique and with x-ray crystallography.
Struct Dyn. 2025 May 1;12(3):034701. doi: 10.1063/4.0000301. eCollection 2025 May.

本文引用的文献

1
The cell biology of phytochrome signalling.
New Phytol. 2002 Jun;154(3):553-590. doi: 10.1046/j.1469-8137.2002.00419.x.
2
Conformational flexibility of phycocyanobilin: an AM1 semiempirical study.
Chemphyschem. 2001 Nov 19;2(11):665-71. doi: 10.1002/1439-7641(20011119)2:11<665::AID-CPHC665>3.0.CO;2-O.
3
Chromophore structure of the physiologically active form (P(fr)) of phytochrome.
Proc Natl Acad Sci U S A. 1983 Oct;80(20):6244-8. doi: 10.1073/pnas.80.20.6244.
4
DETECTION, ASSAY, AND PRELIMINARY PURIFICATION OF THE PIGMENT CONTROLLING PHOTORESPONSIVE DEVELOPMENT OF PLANTS.
Proc Natl Acad Sci U S A. 1959 Dec;45(12):1703-8. doi: 10.1073/pnas.45.12.1703.
5
Genetic and molecular analysis of phytochromes from the filamentous fungus Neurospora crassa.
Eukaryot Cell. 2005 Dec;4(12):2140-52. doi: 10.1128/EC.4.12.2140-2152.2005.
6
7
Multiple roles of a conserved GAF domain tyrosine residue in cyanobacterial and plant phytochromes.
Biochemistry. 2005 Nov 22;44(46):15203-15. doi: 10.1021/bi051633z.
8
The Aspergillus nidulans phytochrome FphA represses sexual development in red light.
Curr Biol. 2005 Oct 25;15(20):1833-8. doi: 10.1016/j.cub.2005.08.061.
9
A chimeric photoreceptor gene, NEOCHROME, has arisen twice during plant evolution.
Proc Natl Acad Sci U S A. 2005 Sep 20;102(38):13705-9. doi: 10.1073/pnas.0504734102. Epub 2005 Sep 8.
10
Phytochrome phosphorylation in plant light signaling.
Photochem Photobiol Sci. 2005 Sep;4(9):681-7. doi: 10.1039/b417912a. Epub 2005 May 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验