Fischer Amanda J, Rockwell Nathan C, Jang Abigail Y, Ernst Lauren A, Waggoner Alan S, Duan Yong, Lei Hongxing, Lagarias J Clark
Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA.
Biochemistry. 2005 Nov 22;44(46):15203-15. doi: 10.1021/bi051633z.
The phytochrome family of red/far-red photoreceptors has been optimized to support photochemical isomerization of a bound bilin chromophore, a process that triggers a conformational change and modulates biochemical output from the surrounding protein scaffold. Recent studies have established that the efficiency of this photochemical process is profoundly altered by mutation of a conserved tyrosine residue (Tyr176) within the bilin-binding GAF domain of the cyanobacterial phytochrome Cph1 [Fischer, A. J., and Lagarias, J. C. (2004) Harnessing phytochrome's glowing potential, Proc. Natl. Acad. Sci. U.S.A. 101, 17334-17339]. Here, we show that the equivalent mutation in plant phytochromes behaves similarly, indicating that the function of this tyrosine in the primary photochemical mechanism is conserved. Saturation mutagenesis of Tyr176 in Cph1 establishes that no other residue can support comparably efficient photoisomerization. The spectroscopic consequences of Tyr176 mutations also reveal that Tyr176 regulates the conversion of the porphyrin-like conformation of the bilin precursor to a more extended conformation. The porphyrin-binding ability of the Tyr176Arg mutant protein indicates that Tyr176 also regulates the ligand-binding specificity of apophytochrome. On the basis of the hydrogen-bonding ability of Tyr176 substitutions that support the nonphotochemical C15-Z,syn to C15-Z,anti interconversion, we propose that Tyr176 orients the carboxyl side chain of a conserved acidic residue to stabilize protonation of the bilin chromophore. A homology model of the GAF domain of Cph1 predicts a C5-Z,syn, C10-Z,syn, C15-Z,anti configuration for the chromophore and implicates Glu189 as the proposed acidic residue stabilizing the extended conformation, an interpretation consistent with site-directed mutagenesis of this conserved acidic residue.
红光/远红光光受体的光敏色素家族已得到优化,以支持结合的胆色素发色团的光化学异构化,这一过程会引发构象变化并调节周围蛋白质支架的生化输出。最近的研究表明,蓝藻光敏色素Cph1的胆色素结合GAF结构域内保守酪氨酸残基(Tyr176)的突变会深刻改变这种光化学过程的效率[菲舍尔,A.J.,和拉加里亚斯,J.C.(2004年)利用光敏色素的发光潜力,《美国国家科学院院刊》101,17334 - 17339]。在这里,我们表明植物光敏色素中的等效突变表现相似,表明该酪氨酸在初级光化学机制中的功能是保守的。对Cph1中Tyr176进行饱和诱变表明,没有其他残基能支持同等高效的光异构化。Tyr176突变的光谱学结果还表明,Tyr176调节胆色素前体的卟啉样构象向更伸展构象的转变。Tyr176Arg突变蛋白的卟啉结合能力表明,Tyr176还调节脱辅基光敏色素的配体结合特异性。基于支持非光化学C15 - Z,顺式到C15 - Z,反式相互转化的Tyr176取代基的氢键结合能力,我们提出Tyr176使保守酸性残基的羧基侧链定向,以稳定胆色素发色团的质子化。Cph1的GAF结构域的同源模型预测发色团的构象为C5 - Z,顺式、C10 - Z,顺式、C15 - Z,反式,并暗示Glu189是提议的稳定伸展构象的酸性残基,这一解释与该保守酸性残基的定点诱变一致。