Suppr超能文献

蓝藻和植物光敏色素中保守的GAF结构域酪氨酸残基的多种作用。

Multiple roles of a conserved GAF domain tyrosine residue in cyanobacterial and plant phytochromes.

作者信息

Fischer Amanda J, Rockwell Nathan C, Jang Abigail Y, Ernst Lauren A, Waggoner Alan S, Duan Yong, Lei Hongxing, Lagarias J Clark

机构信息

Section of Molecular and Cellular Biology, University of California, Davis, California 95616, USA.

出版信息

Biochemistry. 2005 Nov 22;44(46):15203-15. doi: 10.1021/bi051633z.

Abstract

The phytochrome family of red/far-red photoreceptors has been optimized to support photochemical isomerization of a bound bilin chromophore, a process that triggers a conformational change and modulates biochemical output from the surrounding protein scaffold. Recent studies have established that the efficiency of this photochemical process is profoundly altered by mutation of a conserved tyrosine residue (Tyr176) within the bilin-binding GAF domain of the cyanobacterial phytochrome Cph1 [Fischer, A. J., and Lagarias, J. C. (2004) Harnessing phytochrome's glowing potential, Proc. Natl. Acad. Sci. U.S.A. 101, 17334-17339]. Here, we show that the equivalent mutation in plant phytochromes behaves similarly, indicating that the function of this tyrosine in the primary photochemical mechanism is conserved. Saturation mutagenesis of Tyr176 in Cph1 establishes that no other residue can support comparably efficient photoisomerization. The spectroscopic consequences of Tyr176 mutations also reveal that Tyr176 regulates the conversion of the porphyrin-like conformation of the bilin precursor to a more extended conformation. The porphyrin-binding ability of the Tyr176Arg mutant protein indicates that Tyr176 also regulates the ligand-binding specificity of apophytochrome. On the basis of the hydrogen-bonding ability of Tyr176 substitutions that support the nonphotochemical C15-Z,syn to C15-Z,anti interconversion, we propose that Tyr176 orients the carboxyl side chain of a conserved acidic residue to stabilize protonation of the bilin chromophore. A homology model of the GAF domain of Cph1 predicts a C5-Z,syn, C10-Z,syn, C15-Z,anti configuration for the chromophore and implicates Glu189 as the proposed acidic residue stabilizing the extended conformation, an interpretation consistent with site-directed mutagenesis of this conserved acidic residue.

摘要

红光/远红光光受体的光敏色素家族已得到优化,以支持结合的胆色素发色团的光化学异构化,这一过程会引发构象变化并调节周围蛋白质支架的生化输出。最近的研究表明,蓝藻光敏色素Cph1的胆色素结合GAF结构域内保守酪氨酸残基(Tyr176)的突变会深刻改变这种光化学过程的效率[菲舍尔,A.J.,和拉加里亚斯,J.C.(2004年)利用光敏色素的发光潜力,《美国国家科学院院刊》101,17334 - 17339]。在这里,我们表明植物光敏色素中的等效突变表现相似,表明该酪氨酸在初级光化学机制中的功能是保守的。对Cph1中Tyr176进行饱和诱变表明,没有其他残基能支持同等高效的光异构化。Tyr176突变的光谱学结果还表明,Tyr176调节胆色素前体的卟啉样构象向更伸展构象的转变。Tyr176Arg突变蛋白的卟啉结合能力表明,Tyr176还调节脱辅基光敏色素的配体结合特异性。基于支持非光化学C15 - Z,顺式到C15 - Z,反式相互转化的Tyr176取代基的氢键结合能力,我们提出Tyr176使保守酸性残基的羧基侧链定向,以稳定胆色素发色团的质子化。Cph1的GAF结构域的同源模型预测发色团的构象为C5 - Z,顺式、C10 - Z,顺式、C15 - Z,反式,并暗示Glu189是提议的稳定伸展构象的酸性残基,这一解释与该保守酸性残基的定点诱变一致。

相似文献

1
Multiple roles of a conserved GAF domain tyrosine residue in cyanobacterial and plant phytochromes.
Biochemistry. 2005 Nov 22;44(46):15203-15. doi: 10.1021/bi051633z.
2
Phototransformation of the red light sensor cyanobacterial phytochrome 2 from Synechocystis species depends on its tongue motifs.
J Biol Chem. 2014 Sep 12;289(37):25590-600. doi: 10.1074/jbc.M114.562082. Epub 2014 Jul 10.
5
Phytochromes with noncovalently bound chromophores: the ability of apophytochromes to direct tetrapyrrole photoisomerization.
Photochem Photobiol. 2002 May;75(5):554-9. doi: 10.1562/0031-8655(2002)075<0554:pwnbct>2.0.co;2.
6
Distinct classes of red/far-red photochemistry within the phytochrome superfamily.
Proc Natl Acad Sci U S A. 2009 Apr 14;106(15):6123-7. doi: 10.1073/pnas.0902370106. Epub 2009 Apr 1.
7
Structures of cyanobacteriochromes from phototaxis regulators AnPixJ and TePixJ reveal general and specific photoconversion mechanism.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):918-23. doi: 10.1073/pnas.1212098110. Epub 2012 Dec 19.
10
Solution structure of a cyanobacterial phytochrome GAF domain in the red-light-absorbing ground state.
J Mol Biol. 2008 Nov 7;383(2):403-13. doi: 10.1016/j.jmb.2008.08.034. Epub 2008 Aug 22.

引用本文的文献

1
Circular dichroism spectroscopy reveals multiple phytochrome photoproducts in equilibrium.
Photochem Photobiol Sci. 2025 Jul 18. doi: 10.1007/s43630-025-00763-2.
2
Pr and Pfr structures of plant phytochrome A.
Nat Commun. 2025 Jun 21;16(1):5319. doi: 10.1038/s41467-025-60738-w.
4
Integrated Study of Fluorescence Enhancement in the Y176H Variant of Cyanobacterial Phytochrome Cph1.
Biochemistry. 2025 Mar 18;64(6):1348-1358. doi: 10.1021/acs.biochem.4c00687. Epub 2025 Feb 27.
5
Dual-Cys bacteriophytochromes: intermediates in cyanobacterial phytochrome evolution?
FEBS J. 2025 Mar;292(5):1197-1216. doi: 10.1111/febs.17395. Epub 2025 Jan 13.
6
Cyanobacteriochromes: A Rainbow of Photoreceptors.
Annu Rev Microbiol. 2024 Nov;78(1):61-81. doi: 10.1146/annurev-micro-041522-094613. Epub 2024 Nov 7.
7
Elucidating the origins of phycocyanobilin biosynthesis and phycobiliproteins.
Proc Natl Acad Sci U S A. 2023 Apr 25;120(17):e2300770120. doi: 10.1073/pnas.2300770120. Epub 2023 Apr 18.
8
Differential Phototactic Behavior of Closely Related Cyanobacterial Isolates from Yellowstone Hot Spring Biofilms.
Appl Environ Microbiol. 2022 May 24;88(10):e0019622. doi: 10.1128/aem.00196-22. Epub 2022 May 2.
9
Protein-chromophore interactions controlling photoisomerization in red/green cyanobacteriochromes.
Photochem Photobiol Sci. 2022 Apr;21(4):471-491. doi: 10.1007/s43630-022-00213-3. Epub 2022 Apr 11.
10
Improved fluorescent phytochromes for in situ imaging.
Sci Rep. 2022 Apr 4;12(1):5587. doi: 10.1038/s41598-022-09169-x.

本文引用的文献

1
Chromophore structure of the physiologically active form (P(fr)) of phytochrome.
Proc Natl Acad Sci U S A. 1983 Oct;80(20):6244-8. doi: 10.1073/pnas.80.20.6244.
3
The excited-state chemistry of phycocyanobilin: a semiempirical study.
Chemphyschem. 2005 Jul 11;6(7):1259-68. doi: 10.1002/cphc.200400667.
4
Heteronuclear solution-state NMR studies of the chromophore in cyanobacterial phytochrome Cph1.
Biochemistry. 2005 Jun 14;44(23):8244-50. doi: 10.1021/bi050457r.
6
Biochemical and spectroscopic characterization of the bacterial phytochrome of Pseudomonas aeruginosa.
FEBS J. 2005 Apr;272(8):1927-36. doi: 10.1111/j.1742-4658.2005.04623.x.
7
Light controls growth and development via a conserved pathway in the fungal kingdom.
PLoS Biol. 2005 Apr;3(4):e95. doi: 10.1371/journal.pbio.0030095. Epub 2005 Mar 15.
8
Crystal structure of the tandem GAF domains from a cyanobacterial adenylyl cyclase: modes of ligand binding and dimerization.
Proc Natl Acad Sci U S A. 2005 Feb 22;102(8):3082-7. doi: 10.1073/pnas.0409913102. Epub 2005 Feb 11.
9
Determination of the chromophore structures in the photoinduced reaction cycle of phytochrome.
J Am Chem Soc. 2004 Dec 29;126(51):16734-5. doi: 10.1021/ja043959l.
10
Light signal transduction in higher plants.
Annu Rev Genet. 2004;38:87-117. doi: 10.1146/annurev.genet.38.072902.092259.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验