Suppr超能文献

大肠杆菌1,6-二磷酸果糖酶中的新型变构激活位点。

Novel allosteric activation site in Escherichia coli fructose-1,6-bisphosphatase.

作者信息

Hines Justin K, Fromm Herbert J, Honzatko Richard B

机构信息

Department of Biochemistry, Biophysics, and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA.

出版信息

J Biol Chem. 2006 Jul 7;281(27):18386-93. doi: 10.1074/jbc.M602553200. Epub 2006 May 2.

Abstract

Fructose-1,6-bisphosphatase (FBPase) governs a key step in gluconeogenesis, the conversion of fructose 1,6-bisphosphate into fructose 6-phosphate. In mammals, the enzyme is subject to metabolic regulation, but regulatory mechanisms of bacterial FBPases are not well understood. Presented here is the crystal structure (resolution, 1.45A) of recombinant FBPase from Escherichia coli, the first structure of a prokaryotic Type I FBPase. The E. coli enzyme is a homotetramer, but in a quaternary state between the canonical R- and T-states of porcine FBPase. Phe(15) and residues at the C-terminal side of the first alpha-helix (helix H1) occupy the AMP binding pocket. Residues at the N-terminal side of helix H1 hydrogen bond with sulfate ions buried at a subunit interface, which in porcine FBPase undergoes significant conformational change in response to allosteric effectors. Phosphoenolpyruvate and sulfate activate E. coli FBPase by at least 300%. Key residues that bind sulfate anions are conserved among many heterotrophic bacteria, but are absent in FBPases of organisms that employ fructose 2,6-bisphosphate as a regulator. These observations suggest a new mechanism of regulation in the FBPase enzyme family: anionic ligands, most likely phosphoenolpyruvate, bind to allosteric activator sites, which in turn stabilize a tetramer and a polypeptide fold that obstructs AMP binding.

摘要

果糖-1,6-二磷酸酶(FBPase)在糖异生过程中起着关键作用,即将1,6-二磷酸果糖转化为6-磷酸果糖。在哺乳动物中,该酶受到代谢调控,但细菌FBPase的调控机制尚不清楚。本文展示了来自大肠杆菌的重组FBPase的晶体结构(分辨率为1.45埃),这是原核I型FBPase的首个结构。大肠杆菌的这种酶是一种同四聚体,但处于猪FBPase典型R态和T态之间的四级状态。苯丙氨酸(Phe15)和第一个α-螺旋(螺旋H1)C端一侧的残基占据了AMP结合口袋。螺旋H1 N端一侧的残基与埋在亚基界面的硫酸根离子形成氢键,在猪FBPase中,该界面会因变构效应剂而发生显著构象变化。磷酸烯醇丙酮酸和硫酸根可使大肠杆菌FBPase的活性至少提高300%。许多异养细菌中结合硫酸根阴离子的关键残基是保守的,但在以2,6-二磷酸果糖作为调节剂的生物体的FBPase中不存在。这些观察结果提示了FBPase酶家族的一种新调控机制:阴离子配体,很可能是磷酸烯醇丙酮酸,与变构激活位点结合,进而稳定一个四聚体和一种阻碍AMP结合的多肽折叠。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验