Tao Zhi-Yong, Lu Zhen-Qiu, Wang Xinlong
State Key Laboratory of Modem Acoustics and Institute of Acoustics, Nanjing University, Nanjing 210093, China.
IEEE Trans Image Process. 2006 May;15(5):1264-9. doi: 10.1109/tip.2005.864182.
A new reconstruction algorithm in a finite form based on the Rytov transform is presented for acoustical diffraction tomography. Applying the Rytov transform to the governing differential wave equation necessarily introduces the so-called generalized scattering. Our analysis shows that the generalized scattered wave is asymptotically equivalent to the physically scattered wave, and also satisfies the Sommerfeld radiation condition in the far field. Using the method of formal parameter expansion, we further find that all other terms in the expansion of the object function vanish except the first- and second-order ones, and thus reach a finite form solution to the diffraction tomography. Our computer simulation confirms the effectiveness of the algorithm in the case of the scattering objects with cylindrical symmetry, also shows its limitations when it applies to the strong scattering.
提出了一种基于里托夫变换的有限形式的声学衍射层析成像新重建算法。将里托夫变换应用于波动微分方程必然会引入所谓的广义散射。我们的分析表明,广义散射波在渐近意义上等同于物理散射波,并且在远场也满足索末菲辐射条件。使用形式参数展开法,我们进一步发现目标函数展开式中的所有其他项都消失了,只剩下一阶和二阶项,从而得到了衍射层析成像的有限形式解。我们的计算机模拟证实了该算法在具有圆柱对称性散射体情况下的有效性,同时也显示了其在应用于强散射时的局限性。