Anastasio Mark A, Shi Daxin, Huang Yin, Gbur Greg
Department of Biomedical Engineering, Illinois Institute of Technology, Chicago, Illinois 60616, USA.
J Opt Soc Am A Opt Image Sci Vis. 2005 Dec;22(12):2651-61. doi: 10.1364/josaa.22.002651.
A reconstruction theory for intensity diffraction tomography (I-DT) has been proposed that permits reconstruction of a weakly scattering object without explicit knowledge of phase information. We investigate the I-DT reconstruction problem assuming an incident (paraxial) spherical wave and scanning geometries that employ fixed source-to-object distances. Novel reconstruction methods are derived by identifying and exploiting tomographic symmetries and the rotational invariance of the problem. An underlying theme is that symmetries in tomographic imaging systems can facilitate solutions for phase-retrieval problems. A preliminary numerical investigation of the developed reconstruction methods is presented.
已经提出了一种用于强度衍射层析成像(I-DT)的重建理论,该理论允许在无需明确相位信息的情况下重建弱散射物体。我们假设入射(傍轴)球面波和采用固定源到物体距离的扫描几何结构来研究I-DT重建问题。通过识别和利用层析成像对称性以及问题的旋转不变性,推导出了新颖的重建方法。一个基本主题是层析成像系统中的对称性可以促进相位恢复问题的解决方案。给出了对所开发的重建方法的初步数值研究。