DuRose Jenny B, Tam Arvin B, Niwa Maho
Division of Biological Sciences, Section of Molecular Biology, University of California, San Diego, La Jolla, CA, 92093-0377, USA.
Mol Biol Cell. 2006 Jul;17(7):3095-107. doi: 10.1091/mbc.e06-01-0055. Epub 2006 May 3.
The unfolded protein response (UPR) regulates the protein-folding capacity of the endoplasmic reticulum (ER) according to cellular demand. In mammalian cells, three ER transmembrane components, IRE1, PERK, and ATF6, initiate distinct UPR signaling branches. We show that these UPR components display distinct sensitivities toward different forms of ER stress. ER stress induced by ER Ca2+ release in particular revealed fundamental differences in the properties of UPR signaling branches. Compared with the rapid response of both IRE1 and PERK to ER stress induced by thapsigargin, an ER Ca2+ ATPase inhibitor, the response of ATF6 was markedly delayed. These studies are the first side-by-side comparisons of UPR signaling branch activation and reveal intrinsic features of UPR stress sensor activation in response to alternate forms of ER stress. As such, they provide initial groundwork toward understanding how ER stress sensors can confer different responses and how optimal UPR responses are achieved in physiological settings.
未折叠蛋白反应(UPR)根据细胞需求调节内质网(ER)的蛋白质折叠能力。在哺乳动物细胞中,三种内质网跨膜成分,即肌醇需求酶1(IRE1)、蛋白激酶样内质网激酶(PERK)和活化转录因子6(ATF6),启动不同的未折叠蛋白反应信号分支。我们发现这些未折叠蛋白反应成分对不同形式的内质网应激表现出不同的敏感性。特别是内质网Ca2+释放所诱导的内质网应激揭示了未折叠蛋白反应信号分支特性的根本差异。与IRE1和PERK对内质网Ca2+ATP酶抑制剂毒胡萝卜素所诱导的内质网应激的快速反应相比,ATF6的反应明显延迟。这些研究首次对未折叠蛋白反应信号分支激活进行了并列比较,并揭示了未折叠蛋白反应应激传感器激活以应对不同形式内质网应激的内在特征。因此,它们为理解内质网应激传感器如何产生不同反应以及如何在生理环境中实现最佳未折叠蛋白反应提供了初步基础。