Ley Ruth E, Harris J Kirk, Wilcox Joshua, Spear John R, Miller Scott R, Bebout Brad M, Maresca Julia A, Bryant Donald A, Sogin Mitchell L, Pace Norman R
Department of Molecular, Cellular and Developmental Biology, University of Colorado, Boulder, CO 80309-0347, USA.
Appl Environ Microbiol. 2006 May;72(5):3685-95. doi: 10.1128/AEM.72.5.3685-3695.2006.
We applied nucleic acid-based molecular methods, combined with estimates of biomass (ATP), pigments, and microelectrode measurements of chemical gradients, to map microbial diversity vertically on a millimeter scale in a hypersaline microbial mat from Guerrero Negro, Baja California Sur, Mexico. To identify the constituents of the mat, small-subunit rRNA genes were amplified by PCR from community genomic DNA extracted from layers, cloned, and sequenced. Bacteria dominated the mat and displayed unexpected and unprecedented diversity. The majority (1,336) of the 1,586 bacterial 16S rRNA sequences generated were unique, representing 752 species (> or =97% rRNA sequence identity) in 42 of the main bacterial phyla, including 15 novel candidate phyla. The diversity of the mat samples differentiated according to the chemical milieu defined by concentrations of O(2) and H(2)S. Bacteria of the phylum Chloroflexi formed the majority of the biomass by percentage of bulk rRNA and of clones in rRNA gene libraries. This result contradicts the general belief that cyanobacteria dominate these communities. Although cyanobacteria constituted a large fraction of the biomass in the upper few millimeters (>80% of the total rRNA and photosynthetic pigments), Chloroflexi sequences were conspicuous throughout the mat. Filamentous Chloroflexi bacteria were identified by fluorescence in situ hybridization within the polysaccharide sheaths of the prominent cyanobacterium Microcoleus chthonoplastes, in addition to free living in the mat. The biological complexity of the mat far exceeds that observed in other polysaccharide-rich microbial ecosystems, such as the human and mouse distal guts, and suggests that positive feedbacks exist between chemical complexity and biological diversity. The sequences determined in this study have been submitted to the GenBank database and assigned accession numbers DQ 329539 to DQ 331020, and DQ 397339 to DQ 397511.
我们运用基于核酸的分子方法,结合生物量(ATP)估计、色素分析以及化学梯度的微电极测量,在墨西哥南下加利福尼亚州格雷罗内格罗的一个高盐度微生物席中,以毫米尺度垂直绘制微生物多样性图谱。为了确定微生物席的组成成分,从小亚基rRNA基因通过PCR从各层提取的群落基因组DNA中扩增,进行克隆和测序。细菌在微生物席中占主导地位,并展现出意想不到且前所未有的多样性。在生成的1586个细菌16S rRNA序列中,大部分(1336个)是独特的,代表了42个主要细菌门类中的752个物种(rRNA序列同一性≥97%),包括15个新的候选门类。微生物席样本的多样性根据由O₂和H₂S浓度定义的化学环境而有所不同。绿弯菌门细菌在总rRNA和rRNA基因文库中的克隆百分比方面构成了大部分生物量。这一结果与蓝细菌主导这些群落的普遍观点相矛盾。尽管蓝细菌在上部几毫米的生物量中占很大比例(占总rRNA和光合色素的80%以上),但绿弯菌门序列在整个微生物席中都很显著。除了在微生物席中自由生活外,丝状绿弯菌门细菌还通过荧光原位杂交在显著的蓝细菌厚壁微鞘藻的多糖鞘内被鉴定出来。该微生物席的生物复杂性远远超过在其他富含多糖的微生物生态系统中观察到的情况,如人类和小鼠的远端肠道,并表明化学复杂性和生物多样性之间存在正反馈。本研究中确定的序列已提交至GenBank数据库,并被赋予登录号DQ 329539至DQ 331020,以及DQ 397339至DQ 397511。