Suppr超能文献

ARF6和EFA6A调节树突棘的发育和维持。

ARF6 and EFA6A regulate the development and maintenance of dendritic spines.

作者信息

Choi Seungwon, Ko Jaewon, Lee Jae-Ran, Lee Hyun Woo, Kim Karam, Chung Hye Sun, Kim Hyun, Kim Eunjoon

机构信息

National Creative Research Initiative Center for Synaptogenesis, Department of Biological Sciences, Korea Advanced Institute of Science and Technology, Daejeon 305-701, Korea.

出版信息

J Neurosci. 2006 May 3;26(18):4811-9. doi: 10.1523/JNEUROSCI.4182-05.2006.

Abstract

The cellular and molecular mechanisms underlying the development and maintenance of dendritic spines are not fully understood. ADP-ribosylation factor 6 (ARF6) is a small GTPase known to regulate actin remodeling and membrane traffic. Here, we report involvement of ARF6 and exchange factor for ARF6 (EFA6A) in the regulation of spine development and maintenance. An active form of ARF6 promotes the formation of dendritic spines at the expense of filopodia. EFA6A promotes spine formation in an ARF6 activation-dependent manner. Knockdown of ARF6 and EFA6A by small interfering RNA decreases spine formation. Live imaging indicates that ARF6 knockdown decreases the conversion of filopodia to spines and the stability of early spines. The spine-promoting effect of ARF6 is partially blocked by Rac1. ARF6 and EFA6A protect mature spines from inactivity-induced destabilization. These results suggest that ARF6 and EFA6A may regulate the conversion of filopodia to spines and the stability of both early and mature spines.

摘要

树突棘发育和维持背后的细胞及分子机制尚未完全明确。ADP核糖基化因子6(ARF6)是一种已知可调节肌动蛋白重塑和膜运输的小GTP酶。在此,我们报告ARF6及其交换因子EFA6A参与树突棘发育和维持的调控。ARF6的活性形式以丝状伪足为代价促进树突棘的形成。EFA6A以ARF6激活依赖的方式促进树突棘形成。通过小干扰RNA敲低ARF6和EFA6A会减少树突棘形成。实时成像表明,敲低ARF6会减少丝状伪足向树突棘的转变以及早期树突棘的稳定性。ARF6促进树突棘的作用部分被Rac1阻断。ARF6和EFA6A可保护成熟树突棘免受失活诱导的不稳定影响。这些结果表明,ARF6和EFA6A可能调节丝状伪足向树突棘的转变以及早期和成熟树突棘的稳定性。

相似文献

1
ARF6 and EFA6A regulate the development and maintenance of dendritic spines.
J Neurosci. 2006 May 3;26(18):4811-9. doi: 10.1523/JNEUROSCI.4182-05.2006.
2
ARF6-mediated endosomal transport of Telencephalin affects dendritic filopodia-to-spine maturation.
EMBO J. 2012 Aug 1;31(15):3252-69. doi: 10.1038/emboj.2012.182. Epub 2012 Jul 10.
3
A GIT1/PIX/Rac/PAK signaling module regulates spine morphogenesis and synapse formation through MLC.
J Neurosci. 2005 Mar 30;25(13):3379-88. doi: 10.1523/JNEUROSCI.3553-04.2005.
4
Coordination of synaptic adhesion with dendritic spine remodeling by AF-6 and kalirin-7.
J Neurosci. 2008 Jun 11;28(24):6079-91. doi: 10.1523/JNEUROSCI.1170-08.2008.
6
7
ADP-ribosylation factor 6 (ARF6) bidirectionally regulates dendritic spine formation depending on neuronal maturation and activity.
J Biol Chem. 2015 Mar 20;290(12):7323-35. doi: 10.1074/jbc.M114.634527. Epub 2015 Jan 20.

引用本文的文献

2
The role of dystrophin isoforms and interactors in the brain.
Brain. 2025 Apr 3;148(4):1081-1098. doi: 10.1093/brain/awae384.
3
Preliminary Study on Clinical Characteristics and Pathogenesis of Mutations Patients.
Pharmgenomics Pers Med. 2024 May 29;17:289-318. doi: 10.2147/PGPM.S455840. eCollection 2024.
5
α-Synuclein-dependent increases in PIP5K1γ drive inositol signaling to promote neurotoxicity.
Cell Rep. 2023 Oct 31;42(10):113244. doi: 10.1016/j.celrep.2023.113244. Epub 2023 Oct 14.
6
Physiological and Pathological Roles of the Cytohesin Family in Neurons.
Int J Mol Sci. 2022 May 3;23(9):5087. doi: 10.3390/ijms23095087.
7
A systematic analysis of microtubule-destabilizing factors during dendrite pruning in Drosophila.
EMBO Rep. 2021 Oct 5;22(10):e52679. doi: 10.15252/embr.202152679. Epub 2021 Aug 2.
8
MMP-9 Signaling Pathways That Engage Rho GTPases in Brain Plasticity.
Cells. 2021 Jan 15;10(1):166. doi: 10.3390/cells10010166.
9
The Recycling Endosome in Nerve Cell Development: One Rab to Rule Them All?
Front Cell Dev Biol. 2020 Dec 10;8:603794. doi: 10.3389/fcell.2020.603794. eCollection 2020.
10
Role of microRNAs in the pathophysiology of addiction.
Wiley Interdiscip Rev RNA. 2021 May;12(3):e1637. doi: 10.1002/wrna.1637. Epub 2020 Dec 17.

本文引用的文献

1
Dendritic spine geometry: functional implication and regulation.
Neuron. 2005 May 19;46(4):529-32. doi: 10.1016/j.neuron.2005.05.006.
2
Molecular mechanisms of dendritic spine development and remodeling.
Prog Neurobiol. 2005 Feb;75(3):161-205. doi: 10.1016/j.pneurobio.2005.02.003. Epub 2005 Apr 2.
4
Spine architecture and synaptic plasticity.
Trends Neurosci. 2005 Apr;28(4):182-7. doi: 10.1016/j.tins.2005.01.008.
5
Dendritic spines and long-term plasticity.
Nat Rev Neurosci. 2005 Apr;6(4):277-84. doi: 10.1038/nrn1649.
6
Growth of dendritic spines: a continuing story.
Curr Opin Neurobiol. 2005 Feb;15(1):67-72. doi: 10.1016/j.conb.2005.01.015.
9
Identification and verification of novel rodent postsynaptic density proteins.
Mol Cell Proteomics. 2004 Sep;3(9):857-71. doi: 10.1074/mcp.M400045-MCP200. Epub 2004 May 28.
10
Semiquantitative proteomic analysis of rat forebrain postsynaptic density fractions by mass spectrometry.
J Biol Chem. 2004 May 14;279(20):21003-11. doi: 10.1074/jbc.M400103200. Epub 2004 Mar 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验