Nicholson Daniel A, Trana Rachel, Katz Yael, Kath William L, Spruston Nelson, Geinisman Yuri
Department of Cell and Molecular Biology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois 60611, USA.
Neuron. 2006 May 4;50(3):431-42. doi: 10.1016/j.neuron.2006.03.022.
The ability of synapses throughout the dendritic tree to influence neuronal output is crucial for information processing in the brain. Synaptic potentials attenuate dramatically, however, as they propagate along dendrites toward the soma. To examine whether excitatory axospinous synapses on CA1 pyramidal neurons compensate for their distance from the soma to counteract such dendritic filtering, we evaluated axospinous synapse number and receptor expression in three progressively distal regions: proximal and distal stratum radiatum (SR), and stratum lacunosum-moleculare (SLM). We found that the proportion of perforated synapses increases as a function of distance from the soma and that their AMPAR, but not NMDAR, expression is highest in distal SR and lowest in SLM. Computational models of pyramidal neurons derived from these results suggest that they arise from the compartment-specific use of conductance scaling in SR and dendritic spikes in SLM to minimize the influence of distance on synaptic efficacy.
整个树突状树突上的突触影响神经元输出的能力对于大脑中的信息处理至关重要。然而,突触电位在沿着树突向胞体传播时会急剧衰减。为了研究CA1锥体神经元上的兴奋性轴突棘突触是否补偿它们与胞体的距离以抵消这种树突滤波,我们评估了三个逐渐向远端的区域中轴突棘突触的数量和受体表达:近端和远端辐射层(SR)以及腔隙分子层(SLM)。我们发现穿孔突触的比例随着与胞体距离的增加而增加,并且它们的AMPA受体(AMPAR)表达在远端SR中最高,在SLM中最低,而NMDA受体(NMDAR)表达则不然。从这些结果推导出来的锥体神经元计算模型表明,它们源于SR中电导缩放和SLM中树突棘的特定区域使用,以最小化距离对突触效能的影响。