Corbucci G C, Lettieri B, Luongo C, Orrù A, Musu M, Marchi A
Departement of Anesthesia and Resuscitation University of Cagliari, Cagliari, Italy.
Minerva Anestesiol. 2006 May;72(5):337-47.
Following previous studies on the ischemia-induced adaptive changes in human cardiac mitochondria, we examined in the present paper the interaction between nitric oxide-induced (NO) partial inhibition of Cyt. c oxidase (Cyt.OX) and mitochondrial encoded subunit 2 expression. Aim of the study was to investigate specific stages of the biochemical and molecular cascade which takes place in cytoprotective mechanisms of ischemic and reperfused cardiac cell.
We examined human left ventricle samples obtained from 20 patients undergoing elective valve surgery before aortic cross-clamping, 20+/-2 min (prolonged ischemia), 58+/-5 min after cross-clamping (intermittent ischemia) and 21+/-4 min after reconstitution of coronary blood flow (reperfusion). Cyt.OX activity was determined by spectrophotometric method and adenosine triphosphate (ATP) content using bioluminescent assay. Malondialdehyde (MDA) assumed as reactive oxygen species (ROS) generation marker was determined by high-performance liquid chromatography method. On the same cardiac samples mitochondrial encoded Cyt.OX subunit 2 expression was examined by immunoblot analysis and blu native gel electrophoresis method. Statistical study of obtained data was performed using repeated measures analysis of variance (ANOVA).
Prolonged as well intermittent ischemia caused reduction of Cyt.OX activity and ATP, a moderate accumulation of ROS and down-regulation of Cyt.OX subunit 2. When reperfused the cardiomyocytes showed a progressive increase of Cyt.OX activity, ATP pools and Cyt.OX subunit 2 expression. ROS generation was significantly increased by the rapid oxygen re-immission in the cardiac cell.
These data confirm the suggestion that prolonged as well as intermittent ischemia induces activation of cytoprotective mechanisms crucial for cardiac cell survival. Indeed, co-ordinated down-regulation of Cyt.OX activities, ATP pools and mitochondrial encoded Cyt.OX subunit 2 are in favour of an ischemia-activated adaptive mechanism leading to transient and reversible oxidative injury. This observation is confirmed by reduction of apoptosis molecular markers and by complete recovery of mitochondrial oxidative activities in reperfused cardiac tissue.
继先前关于人类心脏线粒体缺血诱导适应性变化的研究之后,我们在本文中研究了一氧化氮诱导的细胞色素c氧化酶(Cyt.OX)部分抑制与线粒体编码亚基2表达之间的相互作用。本研究的目的是调查在缺血和再灌注心脏细胞的细胞保护机制中发生的生化和分子级联反应的特定阶段。
我们检查了从20例接受择期瓣膜手术的患者身上获取的左心室样本,这些样本分别来自主动脉交叉钳夹前、20±2分钟(长时间缺血)、交叉钳夹后58±5分钟(间歇性缺血)以及冠状动脉血流重建后21±4分钟(再灌注)。通过分光光度法测定Cyt.OX活性,使用生物发光测定法测定三磷酸腺苷(ATP)含量。以丙二醛(MDA)作为活性氧(ROS)生成标志物,通过高效液相色谱法测定。在相同的心脏样本上,通过免疫印迹分析和蓝色天然凝胶电泳法检测线粒体编码的Cyt.OX亚基2的表达。使用重复测量方差分析(ANOVA)对获得的数据进行统计学研究。
长时间和间歇性缺血均导致Cyt.OX活性和ATP降低,ROS适度积累以及Cyt.OX亚基2下调。当心肌细胞再灌注时,Cyt.OX活性、ATP池和Cyt.OX亚基2表达逐渐增加。心脏细胞中快速的氧再灌注显著增加了ROS的生成。
这些数据证实了以下观点,即长时间和间歇性缺血均诱导对心脏细胞存活至关重要的细胞保护机制的激活。确实,Cyt.OX活性、ATP池和线粒体编码的Cyt.OX亚基2的协同下调有利于一种缺血激活的适应性机制,导致短暂且可逆的氧化损伤。这一观察结果通过凋亡分子标志物的减少以及再灌注心脏组织中线粒体氧化活性的完全恢复得到证实。