Suppr超能文献

使用计划线性对比法鉴定基因表达模式。

Identification of gene expression patterns using planned linear contrasts.

作者信息

Li Hao, Wood Constance L, Liu Yushu, Getchell Thomas V, Getchell Marilyn L, Stromberg Arnold J

机构信息

Department of Statistics, University of Kentucky, Lexington, KY 40536-0027, USA.

出版信息

BMC Bioinformatics. 2006 May 5;7:245. doi: 10.1186/1471-2105-7-245.

Abstract

BACKGROUND

In gene networks, the timing of significant changes in the expression level of each gene may be the most critical information in time course expression profiles. With the same timing of the initial change, genes which share similar patterns of expression for any number of sampling intervals from the beginning should be considered co-expressed at certain level(s) in the gene networks. In addition, multiple testing problems are complicated in experiments with multi-level treatments when thousands of genes are involved.

RESULTS

To address these issues, we first performed an ANOVA F test to identify significantly regulated genes. The Benjamini and Hochberg (BH) procedure of controlling false discovery rate (FDR) at 5% was applied to the P values of the F test. We then categorized the genes with a significant F test into 4 classes based on the timing of their initial responses by sequentially testing a complete set of orthogonal contrasts, the reverse Helmert series. For genes within each class, specific sequences of contrasts were performed to characterize their general 'fluctuation' shapes of expression along the subsequent sampling time points. To be consistent with the BH procedure, each contrast was examined using a stepwise Studentized Maximum Modulus test to control the gene based maximum family-wise error rate (MFWER) at the level of alphanew determined by the BH procedure. We demonstrated our method on the analysis of microarray data from murine olfactory sensory epithelia at five different time points after target ablation.

CONCLUSION

In this manuscript, we used planned linear contrasts to analyze time-course microarray experiments. This analysis allowed us to characterize gene expression patterns based on the temporal order in the data, the timing of a gene's initial response, and the general shapes of gene expression patterns along the subsequent sampling time points. Our method is particularly suitable for analysis of microarray experiments in which it is often difficult to take sufficiently frequent measurements and/or the sampling intervals are non-uniform.

摘要

背景

在基因网络中,每个基因表达水平显著变化的时间可能是时间进程表达谱中最关键的信息。在初始变化时间相同的情况下,从开始起在任意数量的采样间隔内具有相似表达模式的基因,在基因网络中应被视为在一定水平上共表达。此外,在涉及数千个基因的多级处理实验中,多重检验问题较为复杂。

结果

为解决这些问题,我们首先进行了方差分析F检验以识别显著调控的基因。将错误发现率(FDR)控制在5%的Benjamini和Hochberg(BH)程序应用于F检验的P值。然后,通过依次检验一组完整的正交对比(反向Helmert序列),根据基因初始反应的时间将F检验显著的基因分为4类。对于每一类中的基因,进行特定的对比序列以表征其在后续采样时间点上表达的一般“波动”形状。为与BH程序保持一致,使用逐步Studentized最大模检验对每个对比进行检验,以将基于基因的最大族wise错误率(MFWER)控制在由BH程序确定的α新水平。我们在对目标切除后五个不同时间点的小鼠嗅觉感觉上皮微阵列数据的分析中展示了我们的方法。

结论

在本论文中,我们使用计划线性对比来分析时间进程微阵列实验。这种分析使我们能够基于数据中的时间顺序、基因初始反应的时间以及基因表达模式在后续采样时间点上的一般形状来表征基因表达模式。我们的方法特别适用于分析微阵列实验,在这类实验中通常难以进行足够频繁的测量和/或采样间隔不均匀。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ccc/1468431/c40ddee08fec/1471-2105-7-245-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验