Wang Ling, Montano Monty, Rarick Matt, Sebastiani Paola
Novartis Vaccines and Diagnostics, Emeryville, CA 94608, USA.
BMC Bioinformatics. 2008 Mar 11;9:147. doi: 10.1186/1471-2105-9-147.
Many microarray experiments produce temporal profiles in different biological conditions but common cluster techniques are not able to analyze the data conditional on the biological conditions.
This article presents a novel technique to cluster data from time course microarray experiments performed across several experimental conditions. Our algorithm uses polynomial models to describe the gene expression patterns over time, a full Bayesian approach with proper conjugate priors to make the algorithm invariant to linear transformations, and an iterative procedure to identify genes that have a common temporal expression profile across two or more experimental conditions, and genes that have a unique temporal profile in a specific condition.
We use simulated data to evaluate the effectiveness of this new algorithm in finding the correct number of clusters and in identifying genes with common and unique profiles. We also use the algorithm to characterize the response of human T cells to stimulations of antigen-receptor signaling gene expression temporal profiles measured in six different biological conditions and we identify common and unique genes. These studies suggest that the methodology proposed here is useful in identifying and distinguishing uniquely stimulated genes from commonly stimulated genes in response to variable stimuli. Software for using this clustering method is available from the project home page.
许多微阵列实验会在不同生物学条件下产生时间序列数据,但常用的聚类技术无法根据生物学条件对数据进行分析。
本文提出了一种新技术,用于对在多个实验条件下进行的时间进程微阵列实验数据进行聚类。我们的算法使用多项式模型来描述基因随时间的表达模式,采用具有适当共轭先验的全贝叶斯方法以使算法对线性变换保持不变,并通过迭代过程来识别在两个或更多实验条件下具有共同时间表达模式的基因,以及在特定条件下具有独特时间模式的基因。
我们使用模拟数据来评估这种新算法在确定正确聚类数量以及识别具有共同和独特模式的基因方面的有效性。我们还使用该算法来表征人类T细胞在六种不同生物学条件下对抗抗原受体信号基因表达时间序列测量的刺激的反应,并识别出共同和独特的基因。这些研究表明,这里提出的方法有助于识别和区分响应可变刺激的独特刺激基因和共同刺激基因。可从项目主页获取使用此聚类方法的软件。