Krüger Martina, Kohl Thomas, Linke Wolfgang A
Physiology and Biophysics Unit, Univ. of Muenster, Schlossplatz 5, D-48149 Muenster, Germany.
Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H496-506. doi: 10.1152/ajpheart.00114.2006. Epub 2006 May 5.
The giant protein titin, a major contributor to myocardial mechanics, is expressed in two main cardiac isoforms: stiff N2B (3.0 MDa) and more compliant N2BA (>3.2 MDa). Fetal hearts of mice, rats, and pigs express a unique N2BA isoform ( approximately 3.7 MDa) but no N2B. Around birth the fetal N2BA titin is replaced by smaller-size N2BA isoforms and N2B, which predominates in adult hearts, stiffening their sarcomeres. Here we show that perinatal titin-isoform switching and corresponding passive stiffness (STp) changes do not occur in the hearts of guinea pig and sheep. In these species the shift toward "adult" proportions of N2B isoform is almost completed by midgestation. The relative contributions of titin and collagen to STp were estimated in force measurements on skinned cardiac muscle strips by selective titin proteolysis, leaving the collagen matrix unaffected. Titin-based STp contributed between 42% and 58% to total STp in late-fetal and adult sheep/guinea pigs and adult rats. However, only approximately 20% of total STp was titin based in late-fetal rat. Titin-borne passive tension and the proportion of titin-based STp generally scaled with the N2B isoform percentage. The titin isoform transitions were correlated to a switch in troponin-I (TnI) isoform expression. In rats, fetal slow skeletal TnI (ssTnI) was replaced by adult carciac TnI (cTnI) shortly after birth, thereby reducing the Ca2+ sensitivity of force development. In contrast, guinea pig and sheep coexpressed ssTnI and cTnI in fetal hearts, and skinned fibers from guinea pig showed almost no perinatal shift in Ca2+ sensitivity. We conclude that TnI-isoform and titin-isoform switching and corresponding functional changes during heart development are not initiated by birth but are genetically programmed, species-specific regulated events.
巨大的肌联蛋白是心肌力学的主要贡献者,它以两种主要的心脏同工型表达:刚性的N2B(3.0兆道尔顿)和更具弹性的N2BA(>3.2兆道尔顿)。小鼠、大鼠和猪的胎儿心脏表达一种独特的N2BA同工型(约3.7兆道尔顿),但不表达N2B。出生前后,胎儿的N2BA肌联蛋白被较小尺寸的N2BA同工型和N2B取代,N2B在成年心脏中占主导地位,使肌节变硬。在这里,我们表明豚鼠和绵羊的心脏在围产期不会发生肌联蛋白同工型转换和相应的被动僵硬度(STp)变化。在这些物种中,向“成年”比例的N2B同工型的转变在妊娠中期几乎就已完成。通过选择性肌联蛋白蛋白水解对去表皮心肌条进行力测量,估计了肌联蛋白和胶原蛋白对STp的相对贡献,而胶原蛋白基质未受影响。在胎儿晚期和成年绵羊/豚鼠以及成年大鼠中,基于肌联蛋白的STp占总STp的42%至58%。然而,在胎儿晚期的大鼠中,基于肌联蛋白的总STp仅约为20%。肌联蛋白产生的被动张力和基于肌联蛋白的STp比例通常与N2B同工型百分比成比例。肌联蛋白同工型转变与肌钙蛋白-I(TnI)同工型表达的转换相关。在大鼠中,胎儿慢骨骼肌TnI(ssTnI)在出生后不久被成年心脏TnI(cTnI)取代,从而降低了力产生的Ca2+敏感性相反,豚鼠和绵羊在胎儿心脏中共表达ssTnI和cTnI,并且来自豚鼠的去表皮纤维在围产期Ca2+敏感性几乎没有变化。我们得出结论,心脏发育过程中的TnI同工型和肌联蛋白同工型转换以及相应的功能变化不是由出生引发的,而是基因编程的、物种特异性调节的事件。