Popović Zoran B, Richards Kathryn E, Greenberg Neil L, Rovner Aleksandr, Drinko Jeannie, Cheng Yuanna, Penn Marc S, Fukamachi Kiyotaka, Mal Niladri, Levine Benjamin D, Garcia Mario J, Thomas James D
Cardiovascular Imaging Center, The Cleveland Clinic Foundation, 9500 Euclid Ave., Cleveland, OH 44195, USA.
Am J Physiol Heart Circ Physiol. 2006 Aug;291(2):H762-9. doi: 10.1152/ajpheart.00081.2006. Epub 2006 May 5.
In early diastole, pressure is lower in the apex than in the base of the left ventricle (LV). This early intraventricular pressure difference (IVPD) facilitates LV filling. We assessed how LV diastolic IVPD and intraventricular pressure gradient (IVPG), defined as IVPD divided by length, scale to the heart size and other physiological variables. We studied 10 mice, 10 rats, 5 rabbits, 12 dogs, and 21 humans by echocardiography. Color Doppler M-mode data were postprocessed to reconstruct IVPD and IVPG. Normalized LV filling time was calculated by dividing filling time by RR interval. The relationship between IVPD, IVPG, normalized LV filling time, and LV end-diastolic volume (or mass) as fit to the general scaling equation Y = kM beta, where M is LV heart size parameter, Y is a dependent variable, k is a constant, and beta is the power of the scaling exponent. LV mass varied from 0.049 to 194 g, whereas end-diastolic volume varied from 0.011 to 149 ml. The beta values relating normalized LV filling time with LV mass and end-diastolic volume were 0.091 (SD 0.011) and 0.083 (SD 0.009), respectively (P < 0.0001 vs. 0 for both). The beta values relating IVPD with LV mass and end-diastolic volume were similarly significant at 0.271 (SD 0.039) and 0.243 (SD 0.0361), respectively (P < 0.0001 vs. 0 for both). Finally, beta values relating IVPG with LV mass and end-diastolic volume were -0.118 (SD 0.013) and -0.104 (SD 0.011), respectively (P < 0.0001 vs. 0 for both). As a result, there was an inverse relationship between IVPG and normalized LV filling time (r = -0.65, P < 0.001). We conclude that IVPD decrease, while IVPG increase with decreasing animal size. High IVPG in small mammals may be an adaptive mechanism to short filling times.
在舒张早期,左心室(LV)心尖处的压力低于心底处。这种早期的心室内压力差(IVPD)有助于左心室充盈。我们评估了左心室舒张期IVPD和心室内压力梯度(IVPG,定义为IVPD除以长度)如何随心脏大小和其他生理变量而变化。我们通过超声心动图研究了10只小鼠、10只大鼠、5只兔子、12只狗和21名人类。对彩色多普勒M型数据进行后处理以重建IVPD和IVPG。通过将充盈时间除以RR间期来计算标准化左心室充盈时间。IVPD、IVPG、标准化左心室充盈时间与左心室舒张末期容积(或质量)之间的关系符合一般比例方程Y = kMβ,其中M是左心室心脏大小参数,Y是因变量,k是常数,β是比例指数的幂。左心室质量从0.049克到194克不等,而舒张末期容积从0.011毫升到149毫升不等。将标准化左心室充盈时间与左心室质量和舒张末期容积相关的β值分别为0.091(标准差0.011)和0.083(标准差0.009)(两者与0相比P < 0.0001)。将IVPD与左心室质量和舒张末期容积相关的β值同样显著,分别为0.271(标准差0.039)和0.243(标准差0.0361)(两者与0相比P < 0.0001)。最后,将IVPG与左心室质量和舒张末期容积相关的β值分别为 -0.118(标准差0.013)和 -0.104(标准差0.011)(两者与0相比P < 0.0001)。结果,IVPG与标准化左心室充盈时间之间存在负相关(r = -0.65,P < 0.001)。我们得出结论,随着动物体型减小,IVPD降低,而IVPG升高。小型哺乳动物中的高IVPG可能是对短充盈时间的一种适应性机制。