Suppr超能文献

Expression and homology modeling of 2-aminobiphenyl-2,3-diol-1,2-dioxygenase from Pseudomonas stutzeri carbazole degradation pathway.

作者信息

Larentis Ariane Leites, Almeida Rodrigo Volcan, Rössle Shaila Cíntia, Cardoso Alexander Machado, Almeida Welington Inácio, Bisch Paulo Mascarello, Alves Tito Lívio Moitinho, Martins Orlando Bonifácio

机构信息

Laboratório de Bioprocessos, Programa de Engenharia Química, COPPE, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil.

出版信息

Cell Biochem Biophys. 2006;44(3):530-8. doi: 10.1385/CBB:44:3:530.

Abstract

The enzyme 2'-aminobiphenyl-2,3-diol-1,2-dioxygenase (CarB), encoded by two genes (carBa and carBb), is an alpha(2)beta(2) heterotetramer that presents meta-cleavage activity toward the hydroxylated aromatic ring in the carbazole degradation pathway from petroleum-degrader bacteria Pseudomonas spp. The 1,082-base pair polymerase chain reaction product corresponding to carBaBb genes from Pseudomonas stutzeri ATCC 31258 was cloned by site-specific recombination and expressed in high levels in Escherichia coli BL21-SI with a histidine-tag and in native form. The CarB activity toward 2,3-dihydroxybiphenyl was similar for these two constructions. The alpha(2)beta(2)-heterotetrameric 3D model of CarB dioxygenase was proposed by homology modeling using the protocatechuate 4,5-dioxygenase (LigAB) structure as template. Accordingly, His12, His53, and Glu230 coordinate the Fe(II) in the catalytic site at the subunit CarBb. The model also indicates that His182 is the catalytic base responsible for deprotonating one of the hydroxyl group of the substrate by a hydrogen bond. The hydrophobic residues Trp257 and Phe258 in the CarB structure substituted the LigAB amino acid residues Ser269 and Asn270. These data could explain why the CarB was active for 2,3-dihydroxybiphenyl and not for protocatechuate.

摘要

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验