Suppr超能文献

苏氨酸残基249在调节施氏假单胞菌OX1儿茶酚-2,3-双加氧酶的催化效率和底物特异性中的作用。

The role of residue Thr249 in modulating the catalytic efficiency and substrate specificity of catechol-2,3-dioxygenase from Pseudomonas stutzeri OX1.

作者信息

Siani Loredana, Viggiani Ambra, Notomista Eugenio, Pezzella Alessandro, Di Donato Alberto

机构信息

Dipartimento di Biologia Strutturale e Funzionale, Università di Napoli Federico II, Napoli, Italy.

出版信息

FEBS J. 2006 Jul;273(13):2963-76. doi: 10.1111/j.1742-4658.2006.05307.x. Epub 2006 May 30.

Abstract

Bioremediation strategies use microorganisms to remove hazardous substances, such as aromatic molecules, from polluted sites. The applicability of these techniques would greatly benefit from the expansion of the catabolic ability of these bacteria in transforming a variety of aromatic compounds. Catechol-2,3-dioxygenase (C2,3O) from Pseudomonas stutzeri OX1 is a key enzyme in the catabolic pathway for aromatic molecules. Its specificity and regioselectivity control the range of molecules degraded through the catabolic pathway of the microorganism that is able to use aromatic hydrocarbons as growth substrates. We have used in silico substrate docking procedures to investigate the molecular determinants that direct the enzyme substrate specificity. In particular, we looked for a possible molecular explanation of the inability of catechol-2,3-dioxygenase to cleave 3,5-dimethylcatechol and 3,6-dimethylcatechol and of the efficient cleavage of 3,4-dimethylcatechol. The docking study suggested that reduction in the volume of the side chain of residue 249 could allow the binding of 3,5-dimethylcatechol and 3,6-dimethylcatechol. This information was used to prepare and characterize mutants at position 249. The kinetic and regiospecificity parameters of the mutants confirm the docking predictions, and indicate that this position controls the substrate specificity of catechol-2,3-dioxygenase. Moreover, our results suggest that Thr249 also plays a previously unsuspected role in the catalytic mechanism of substrate cleavage. The hypothesis is advanced that a water molecule bound between one of the hydroxyl groups of the substrate and the side chain of Thr249 favors the deprotonation/protonation of this hydroxyl group, thus assisting the final steps of the cleavage reaction.

摘要

生物修复策略利用微生物从污染场地中去除有害物质,如芳香族分子。这些技术的适用性将极大地受益于这些细菌在转化各种芳香族化合物方面分解代谢能力的扩展。来自施氏假单胞菌OX1的儿茶酚-2,3-双加氧酶(C2,3O)是芳香族分子分解代谢途径中的关键酶。其特异性和区域选择性控制着通过能够利用芳香烃作为生长底物的微生物分解代谢途径降解的分子范围。我们已使用计算机模拟底物对接程序来研究指导酶底物特异性的分子决定因素。特别是,我们寻找了儿茶酚-2,3-双加氧酶无法裂解3,5-二甲基儿茶酚和3,6-二甲基儿茶酚以及能有效裂解3,4-二甲基儿茶酚的可能分子解释。对接研究表明,残基249侧链体积的减小可能允许3,5-二甲基儿茶酚和3,6-二甲基儿茶酚的结合。该信息用于制备和表征249位的突变体。突变体的动力学和区域特异性参数证实了对接预测,并表明该位置控制着儿茶酚-2,3-双加氧酶的底物特异性。此外,我们的结果表明,Thr249在底物裂解的催化机制中也发挥了先前未被怀疑的作用。我们提出了一个假设,即结合在底物的一个羟基与Thr249侧链之间的水分子有利于该羟基的去质子化/质子化,从而协助裂解反应的最后步骤。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验