The University of Queensland, Advanced Water Management Centre, Queensland, 4072, Australia.
The University of Queensland, National Research Centre for Environmental Toxicology (Entox), Brisbane, Queensland, 4108, Australia; Swiss Federal Institute of Aquatic Science and Technology (EAWAG), Überlandstrasse 133, Dübendorf, 8600, Switzerland.
Water Res. 2015 Dec 15;87:49-58. doi: 10.1016/j.watres.2015.09.007. Epub 2015 Sep 8.
When ozonation is employed in advanced water treatment plants to produce drinking water, dissolved organic matter reacts with ozone (O3) and/or hydroxyl radicals (OH) affecting disinfection byproduct (DBP) formation with subsequently used chlorine-based disinfectants. This study presents the effects of varying exposures of O3 and •OH on DBP concentrations and their associated toxicity generated after subsequent chlorination. DBP formation potential tests and in vitro bioassays were conducted after batch ozonation experiments of coagulated surface water with and without addition of tertiary butanol (t-BuOH, 10 mM) and hydrogen peroxide (H2O2, 1 mg/mg O3), and at different pH (6-8) and transferred ozone doses (0-1 mg/mg TOC). Although ozonation led to a 24-37% decrease in formation of total trihalomethanes, haloacetic acids, haloacetonitriles, and trihaloacetamides, an increase in formation of total trihalonitromethanes, chloral hydrate, and haloketones was observed. This effect however was less pronounced for samples ozonated at conditions favoring molecular ozone (e.g., pH 6 and in the presence of t-BuOH) over •OH reactions (e.g., pH 8 and in the presence of H2O2). Compared to ozonation only, addition of H2O2 consistently enhanced formation of all DBP groups (20-61%) except trihalonitromethanes. This proves that •OH-transformed organic matter is more susceptible to halogen incorporation. Analogously, adsorbable organic halogen (AOX) concentrations increased under conditions that favor •OH reactions. The ratio of unknown to known AOX, however, was greater at conditions that promote direct O3 reactions. Although significant correlation was found between AOX and genotoxicity with the p53 bioassay, toxicity tests using 4 in vitro bioassays showed relatively low absolute differences between various ozonation conditions.
当臭氧氧化法被应用于先进的水处理厂以生产饮用水时,溶解的有机物会与臭氧(O3)和/或羟基自由基(OH)发生反应,从而影响后续使用的氯基消毒剂产生的消毒副产物(DBP)形成。本研究介绍了不同的臭氧和•OH 暴露对 DBP 浓度及其后续氯化生成的相关毒性的影响。在对混凝地表水进行批次臭氧氧化实验后,进行了 DBP 形成潜力测试和体外生物测定,这些实验分别添加了叔丁醇(t-BuOH,10 mM)和过氧化氢(H2O2,1 mg/mg O3),以及在不同的 pH 值(6-8)和转移臭氧剂量(0-1 mg/mg TOC)下进行。尽管臭氧氧化导致总三卤甲烷、卤乙酸、卤乙腈和三卤乙酰胺的形成减少了 24-37%,但总三卤硝基甲烷、氯仿和卤酮的形成却有所增加。然而,在有利于分子臭氧的条件下(例如 pH 6 并存在 t-BuOH)进行的臭氧氧化,与•OH 反应(例如 pH 8 并存在 H2O2)相比,这种影响不太明显。与单独臭氧氧化相比,添加 H2O2 一致地增强了所有 DBP 组的形成(20-61%),除了三卤硝基甲烷。这证明了•OH 转化的有机物更容易发生卤化。类似地,在有利于•OH 反应的条件下,可吸附有机卤素(AOX)的浓度增加。然而,在促进直接 O3 反应的条件下,未知 AOX 与已知 AOX 的比值更大。尽管 p53 生物测定法发现 AOX 与遗传毒性之间存在显著相关性,但使用 4 种体外生物测定法的毒性测试显示,在各种臭氧氧化条件下,毒性的绝对差异相对较小。