Suppr超能文献

基于α互信息的非刚性配准在标记磁共振序列中的心肌运动估计

Myocardial motion estimation in tagged MR sequences by using alphaMI-based non rigid registration.

作者信息

Oubel E, Tobon-Gomez C, Hero A O, Frangi A F

机构信息

Computational Imaging Laboratory, Pompeu Fabra University, Barcelona, Spain.

出版信息

Med Image Comput Comput Assist Interv. 2005;8(Pt 2):271-8. doi: 10.1007/11566489_34.

Abstract

Tagged Magnetic Resonance Imaging (MRI) is currently the reference MR modality for myocardial motion and strain analysis. NMI-based non rigid registration has proven to be an accurate method to retrieve cardiac deformation fields. The use of alphaMI permits higher dimensional features to be implemented in myocardial deformation estimation through image registration. This paper demonstrates that this is feasible with a set of Haar wavelet features of high dimension. While we do not demonstrate performance improvement for this set of features, there is no significant degradation as compared to implementing the registration method with the traditional NMI metric. We use Entropic Spanning Graphs (ESGs) to estimate the alphaMI of the wavelet feature vectors WFVs since this is not possible with histograms. To the best of our knowledge, this is the first time that ESGs are used for non rigid registration.

摘要

标记磁共振成像(MRI)是目前用于心肌运动和应变分析的参考磁共振模态。基于归一化互信息(NMI)的非刚性配准已被证明是一种获取心脏变形场的准确方法。α互信息(alphaMI)的使用允许通过图像配准在心肌变形估计中实现更高维度的特征。本文证明了使用一组高维哈尔小波特征来实现这一点是可行的。虽然我们没有证明这组特征在性能上有所提升,但与使用传统NMI度量实现配准方法相比,也没有显著的性能下降。我们使用熵生成图(ESG)来估计小波特征向量(WFV)的alphaMI,因为用直方图无法做到这一点。据我们所知,这是首次将ESG用于非刚性配准。

相似文献

1
Myocardial motion estimation in tagged MR sequences by using alphaMI-based non rigid registration.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):271-8. doi: 10.1007/11566489_34.
2
Automatic recovery of the left ventricular blood pool in cardiac cine MR images.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):110-8. doi: 10.1007/978-3-540-85988-8_14.
3
Sparse Bayesian registration.
Med Image Comput Comput Assist Interv. 2014;17(Pt 1):235-42. doi: 10.1007/978-3-319-10404-1_30.
4
Registration using sparse free-form deformations.
Med Image Comput Comput Assist Interv. 2012;15(Pt 2):659-66. doi: 10.1007/978-3-642-33418-4_81.
5
Combining registration and minimum surfaces for the segmentation of the left ventricle in cardiac cine MR images.
Med Image Comput Comput Assist Interv. 2009;12(Pt 2):910-8. doi: 10.1007/978-3-642-04271-3_110.
6
Tracking and analysis of cine-delayed enhancement MR.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):692-700. doi: 10.1007/11566489_85.
7
Automatic segmentation of cardiac MRI cines validated for long axis views.
Comput Med Imaging Graph. 2013 Oct-Dec;37(7-8):500-11. doi: 10.1016/j.compmedimag.2013.09.002. Epub 2013 Sep 12.
8
Elastic registration of prostate MR images based on estimation of deformation states.
Med Image Anal. 2015 Apr;21(1):87-103. doi: 10.1016/j.media.2014.12.007. Epub 2015 Jan 8.
9
Consistent estimation of cardiac motions by 4D image registration.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):902-10. doi: 10.1007/11566489_111.
10
Analytic signal phase-based myocardial motion estimation in tagged MRI sequences by a bilinear model and motion compensation.
Med Image Anal. 2015 Aug;24(1):149-162. doi: 10.1016/j.media.2015.06.005. Epub 2015 Jun 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验