Suppr超能文献

使用稀疏自由形式变形进行配准。

Registration using sparse free-form deformations.

作者信息

Shi Wenzhe, Zhuang Xiahai, Pizarro Luis, Bai Wenjia, Wang Haiyan, Tung Kai-Pin, Edwards Philip, Rueckert Daniel

机构信息

Biomedical Image Analysis Group, Imperial College London, UK.

出版信息

Med Image Comput Comput Assist Interv. 2012;15(Pt 2):659-66. doi: 10.1007/978-3-642-33418-4_81.

Abstract

Non-rigid image registration using free-form deformations (FFD) is a widely used technique in medical image registration. The balance between robustness and accuracy is controlled by the control point grid spacing and the amount of regularization. In this paper, we revisit the classic FFD registration approach and propose a sparse representation for FFDs using the principles of compressed sensing. The sparse free-form deformation model (SFFD) can capture fine local details such as motion discontinuities without sacrificing robustness. We demonstrate the capabilities of the proposed framework to accurately estimate smooth as well as discontinuous deformations in 2D and 3D image sequences. Compared to the classic FFD approach, a significant increase in registration accuracy can be observed in natural images (61%) as well as in cardiac MR images (53%) with discontinuous motions.

摘要

使用自由形式变形(FFD)的非刚性图像配准是医学图像配准中广泛使用的技术。稳健性和准确性之间的平衡由控制点网格间距和正则化量控制。在本文中,我们重新审视经典的FFD配准方法,并利用压缩感知原理为FFD提出一种稀疏表示。稀疏自由形式变形模型(SFFD)可以在不牺牲稳健性的情况下捕捉精细的局部细节,如运动不连续性。我们展示了所提出框架在二维和三维图像序列中准确估计平滑和不连续变形的能力。与经典FFD方法相比,在具有不连续运动的自然图像(提高61%)以及心脏磁共振图像(提高53%)中,配准精度有显著提高。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验