Suppr超能文献

基于形变状态估计的前列腺磁共振图像弹性配准。

Elastic registration of prostate MR images based on estimation of deformation states.

机构信息

Imaging Research Laboratories, Robarts Research Institute, London, Ontario, Canada; Biomedical Engineering Graduate Program, The University of Western Ontario, London, Ontario, Canada.

Department of Electrical and Computer Engineering, McMaster University, Hamilton, Ontario, Canada.

出版信息

Med Image Anal. 2015 Apr;21(1):87-103. doi: 10.1016/j.media.2014.12.007. Epub 2015 Jan 8.

Abstract

Magnetic resonance imaging (MRI) is being used increasingly for image-guided targeted biopsy and focal therapy of prostate cancer. In this paper, a combined rigid and deformable registration technique is proposed to register pre-treatment diagnostic 3T magnetic resonance (MR) images of the prostate, with the identified target tumor(s), to intra-treatment 1.5T MR images. The pre-treatment T2-weighted MR images were acquired with patients in a supine position using an endorectal coil in a 3T scanner, while the intra-treatment T2-weighted MR images were acquired in a 1.5T scanner before insertion of the needle with patients in the semi-lithotomy position. Both the rigid and deformable registration algorithms employ an intensity-based distance metric defined based on the modality independent neighborhood descriptors (MIND) between images. The optimization routine for estimating the rigid transformation parameters is initialized using four pairs of manually selected approximate corresponding points on the boundaries of the prostate. In this paper, the problem of deformable image registration is approached from the perspective of state estimation for dynamical systems. The registration algorithm employs a rather generic dynamic linear elastic model of the tissue deformation discretized by the finite element method (FEM). We use the model in a classical state estimation framework to estimate the deformation of the prostate based on the distance metric between pre- and intra-treatment images. Our deformable registration results using 17 sets of prostate MR images showed that the proposed method yielded a target registration error (TRE) of 1.87 ± 0.94 mm,2.03 ± 0.94 mm, and 1.70 ± 0.93 mm for the whole gland (WG), central gland (CG), and peripheral zone (PZ), respectively, using 76 manually-identified fiducial points. This was an improvement over the 2.67 ± 1.31 mm, 2.95 ± 1.43 mm, and 2.34 ± 1.11 mm, respectively for the WG, CG, and PZ after rigid registration alone. Dice similarity coefficients (DSC) in the WG, CG and PZ were 88.2 ± 5.3, 85.6 ± 7.6 and 68.7 ± 6.9 percent, respectively. Furthermore, the mean absolute distances (MAD) between surfaces was 1.26 ± 0.56 mm and 1.27 ± 0.55 mm in the WG and CG, after deformable registration. These results indicate that the proposed registration technique has sufficient accuracy for localizing prostate tumors in MRI-guided targeted biopsy or focal therapy of clinically localized prostate cancer.

摘要

磁共振成像(MRI)越来越多地用于前列腺癌的图像引导靶向活检和局灶治疗。在本文中,提出了一种组合的刚性和可变形配准技术,用于将前列腺的预处理诊断 3T 磁共振(MR)图像与识别出的靶肿瘤配准到治疗中的 1.5T MR 图像。预处理 T2 加权 MR 图像是在 3T 扫描仪中使用直肠内线圈在仰卧位采集的,而在插入针之前,在半截石位的患者中,在 1.5T 扫描仪中采集治疗中的 T2 加权 MR 图像。刚性和可变形配准算法都使用基于图像之间的模态独立邻域描述符(MIND)的基于强度的距离度量。用于估计刚性变换参数的优化例程是使用前列腺边界上手动选择的四对近似对应点初始化的。在本文中,从动态系统状态估计的角度处理可变形图像配准问题。配准算法采用通过有限元方法(FEM)离散化的组织变形的相当通用的动态线性弹性模型。我们使用该模型在经典状态估计框架中,根据预处理和治疗中图像之间的距离度量来估计前列腺的变形。我们使用 17 组前列腺 MR 图像的可变形配准结果表明,使用 76 个手动识别的基准点,该方法分别产生了整个腺体(WG)、中央腺体(CG)和外周区(PZ)的目标配准误差(TRE)为 1.87 ± 0.94mm、2.03 ± 0.94mm 和 1.70 ± 0.93mm。这比单独刚性配准后 WG、CG 和 PZ 的 2.67 ± 1.31mm、2.95 ± 1.43mm 和 2.34 ± 1.11mm 分别有所提高。WG、CG 和 PZ 的 Dice 相似系数(DSC)分别为 88.2 ± 5.3%、85.6 ± 7.6%和 68.7 ± 6.9%。此外,在可变形配准后,WG 和 CG 的表面之间的平均绝对距离(MAD)分别为 1.26 ± 0.56mm 和 1.27 ± 0.55mm。这些结果表明,所提出的配准技术具有足够的精度,可用于在 MRI 引导的靶向活检或局部前列腺癌的局灶治疗中定位前列腺肿瘤。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验