Suppr超能文献

使用多个电生理图谱自动选择脑深部电刺激靶点

Automatic selection of DBS target points using multiple electrophysiological atlases.

作者信息

D'Haese Pierre-Francois, Pallavaram Srivatsan, Niermann Ken, Spooner John, Kao Chris, Konrad Peter E, Dawant Benoit M

机构信息

Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, USA.

出版信息

Med Image Comput Comput Assist Interv. 2005;8(Pt 2):427-34. doi: 10.1007/11566489_53.

Abstract

In this paper we study and evaluate the influence of the choice of a particular reference volume as the electrophysiological atlas on the accuracy of the automatic predictions of optimal points for deep brain stimulator (DBS) implants. We refer to an electrophysiological atlas as a spatial map of electrophysiological information such as micro electrode recordings (MER), stimulation parameters, final implants positions, etc., which are acquired for each patient and then mapped onto a single reference volume using registration algorithms. An atlas-based prediction of the optimal point for a DBS surgery is made by registering a patient's image volume to that reference volume, that is, by computing a correct coordinate mapping between the two; and then by projecting the optimal point from the atlas to the patient using the transformation from the registration algorithm. Different atlases, as well as different parameterizations of the registration algorithm, lead to different and somewhat independent atlas-based predictions. We show how the use of multiple reference volumes can improve the accuracy of prediction by combining the predictions from the multiple reference volumes weighted by the accuracy of the non-rigid registration between each of the corresponding atlases and the patient volume.

摘要

在本文中,我们研究并评估了选择特定参考体积作为电生理图谱对深部脑刺激器(DBS)植入最佳点自动预测准确性的影响。我们将电生理图谱定义为电生理信息的空间图谱,如微电极记录(MER)、刺激参数、最终植入位置等,这些信息是为每个患者获取的,然后使用配准算法映射到单个参考体积上。基于图谱的DBS手术最佳点预测是通过将患者的图像体积配准到该参考体积来实现的,即通过计算两者之间的正确坐标映射;然后使用配准算法的变换将图谱中的最佳点投影到患者身上。不同的图谱以及配准算法的不同参数化会导致不同且在一定程度上相互独立的基于图谱的预测。我们展示了如何通过结合多个参考体积的预测来提高预测准确性,这些预测通过每个相应图谱与患者体积之间非刚性配准的准确性进行加权。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验