Suppr超能文献

脑移位对脑深部刺激手术功能图谱制作的影响。

Effect of brain shift on the creation of functional atlases for deep brain stimulation surgery.

机构信息

Department of Electrical Engineering, Vanderbilt University, VU Station B 351662, Nashville, TN 37240-1662, USA.

出版信息

Int J Comput Assist Radiol Surg. 2010 May;5(3):221-8. doi: 10.1007/s11548-009-0391-1. Epub 2009 Aug 2.

Abstract

PURPOSE

In the recent past many groups have tried to build functional atlases of the deep brain using intra-operatively acquired information such as stimulation responses or micro-electrode recordings. An underlying assumption in building such atlases is that anatomical structures do not move between pre-operative imaging and intra-operative recording. In this study, we present evidences that this assumption is not valid. We quantify the effect of brain shift between pre-operative imaging and intra-operative recording on the creation of functional atlases using intra-operative somatotopy recordings and stimulation response data.

METHODS

A total of 73 somatotopy points from 24 bilateral subthalamic nucleus (STN) implantations and 52 eye deviation stimulation response points from 17 bilateral STN implantations were used. These points were spatially normalized on a magnetic resonance imaging (MRI) atlas using a fully automatic non-rigid registration algorithm. Each implantation was categorized as having low, medium or large brain shift based on the amount of pneumocephalus visible on post-operative CT. The locations of somatotopy clusters and stimulation maps were analyzed for each category.

RESULTS

The centroid of the large brain shift cluster of the somatotopy data (posterior, lateral, inferior: 3.06, 11.27, 5.36 mm) was found posterior, medial and inferior to that of the medium cluster (2.90, 13.57, 4.53 mm) which was posterior, medial and inferior to that of the low shift cluster (1.94, 13.92, 3.20 mm). The coordinates are referenced with respect to the mid-commissural point. Euclidean distances between the centroids were 1.68, 2.44 and 3.59 mm, respectively for low-medium, medium-large and low-large shift clusters. We found similar trends for the positions of the stimulation maps. The Euclidian distance between the highest probability locations on the low and medium-large shift maps was 4.06 mm.

CONCLUSION

The effect of brain shift in deep brain stimulation (DBS) surgery has been demonstrated using intra-operative somatotopy recordings as well as stimulation response data. The results not only indicate that considerable brain shift happens before micro-electrode recordings in DBS but also that brain shift affects the creation of accurate functional atlases. Therefore, care must be taken when building and using such atlases of intra-operative data and also when using intra-operative data to validate anatomical atlases.

摘要

目的

在最近的一段时间里,许多研究小组试图利用术中获得的信息,如刺激反应或微电极记录,构建深部脑功能图谱。在构建这些图谱时,一个基本假设是解剖结构在术前成像和术中记录之间不会移动。在这项研究中,我们提供了证据表明这种假设是不成立的。我们使用术中体感定位记录和刺激反应数据来量化术前成像和术中记录之间的脑移位对功能图谱创建的影响。

方法

共使用了 24 例双侧丘脑底核(STN)植入术中的 73 个体感定位点和 17 例双侧 STN 植入术中的 52 个眼偏斜刺激反应点。这些点使用完全自动的非刚性配准算法在磁共振成像(MRI)图谱上进行空间归一化。根据术后 CT 上可见的气颅量,每个植入物被归类为具有低、中或大的脑移位。分析了每个类别的体感聚类和刺激图的位置。

结果

体感数据的大移位聚类的质心(后、侧、下:3.06、11.27、5.36mm)位于中移位聚类(2.90、13.57、4.53mm)的后、内和下,而中移位聚类位于低移位聚类(1.94、13.92、3.20mm)的后、内和下。坐标以中连合点为参考。低-中、中-大、低-大移位聚类的质心之间的欧几里得距离分别为 1.68、2.44 和 3.59mm。我们发现刺激图位置也存在类似的趋势。低和中-大移位图上最高概率位置之间的欧几里得距离为 4.06mm。

结论

使用术中体感记录和刺激反应数据证明了深部脑刺激(DBS)手术中脑移位的影响。结果不仅表明 DBS 中微电极记录前发生了相当大的脑移位,而且脑移位还会影响准确功能图谱的创建。因此,在构建和使用术中数据的功能图谱时以及在使用术中数据验证解剖图谱时,必须小心谨慎。

相似文献

1
Effect of brain shift on the creation of functional atlases for deep brain stimulation surgery.
Int J Comput Assist Radiol Surg. 2010 May;5(3):221-8. doi: 10.1007/s11548-009-0391-1. Epub 2009 Aug 2.
2
A method to correct for brain shift when building electrophysiological atlases for deep brain stimulation (DBS) surgery.
Med Image Comput Comput Assist Interv. 2009;12(Pt 1):557-64. doi: 10.1007/978-3-642-04268-3_69.
3
Accuracy of different three-dimensional subcortical human brain atlases for DBS -lead localisation.
Neuroimage Clin. 2018;20:868-874. doi: 10.1016/j.nicl.2018.09.030. Epub 2018 Sep 27.
5
Towards a multi-modal atlas for neurosurgical planning.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):389-96. doi: 10.1007/11866763_48.
6
Surgical targeting accuracy analysis of six methods for subthalamic nucleus deep brain stimulation.
Comput Aided Surg. 2007 Nov;12(6):325-34. doi: 10.3109/10929080701730987.
7
Tractography-assisted deep brain stimulation of the superolateral branch of the medial forebrain bundle (slMFB DBS) in major depression.
Neuroimage Clin. 2018 Aug 14;20:580-593. doi: 10.1016/j.nicl.2018.08.020. eCollection 2018.
8
Automatic target and trajectory identification for deep brain stimulation (DBS) procedures.
Med Image Comput Comput Assist Interv. 2007;10(Pt 1):483-90. doi: 10.1007/978-3-540-75757-3_59.
9
DBStar: An Open-Source Tool Kit for Imaging Analysis with Patient-Customized Deep Brain Stimulation Platforms.
Stereotact Funct Neurosurg. 2018;96(1):13-21. doi: 10.1159/000486645. Epub 2018 Feb 7.

引用本文的文献

1
Theta and beta power in the subthalamic nucleus responds to conflict across subregions and hemispheres.
Brain Commun. 2025 Jan 16;7(1):fcaf021. doi: 10.1093/braincomms/fcaf021. eCollection 2025.
3
Model-based image updating in deep brain stimulation with assimilation of deep brain sparse data.
Med Phys. 2023 Dec;50(12):7904-7920. doi: 10.1002/mp.16578. Epub 2023 Jul 7.
4
Advances in the intraoperative delineation of malignant glioma margin.
Front Oncol. 2023 Jan 26;13:1114450. doi: 10.3389/fonc.2023.1114450. eCollection 2023.
6
Prediction of Clinical Deep Brain Stimulation Target for Essential Tremor From 1.5 Tesla MRI Anatomical Landmarks.
Front Neurol. 2021 Oct 27;12:620360. doi: 10.3389/fneur.2021.620360. eCollection 2021.
8
Model-Based Image Updating for Brain Shift in Deep Brain Stimulation Electrode Placement Surgery.
IEEE Trans Biomed Eng. 2020 Dec;67(12):3542-3552. doi: 10.1109/TBME.2020.2990669. Epub 2020 Nov 19.
9
Current Directions in Deep Brain Stimulation for Parkinson's Disease-Directing Current to Maximize Clinical Benefit.
Neurol Ther. 2020 Jun;9(1):25-41. doi: 10.1007/s40120-020-00181-9. Epub 2020 Mar 9.
10
Activation robustness with directional leads and multi-lead configurations in deep brain stimulation.
J Neural Eng. 2020 Mar 20;17(2):026012. doi: 10.1088/1741-2552/ab7b1d.

本文引用的文献

2
Accuracy evaluation of microTargeting Platforms for deep-brain stimulation using virtual targets.
IEEE Trans Biomed Eng. 2009 Jan;56(1):37-44. doi: 10.1109/TBME.2008.2002110.
3
Current steering to control the volume of tissue activated during deep brain stimulation.
Brain Stimul. 2008 Jan;1(1):7-15. doi: 10.1016/j.brs.2007.08.004.
4
A new method for creating electrophysiological maps for DBS surgery and their application to surgical guidance.
Med Image Comput Comput Assist Interv. 2008;11(Pt 1):670-7. doi: 10.1007/978-3-540-85988-8_80.
6
Comparison of three methods of targeting the subthalamic nucleus for chronic stimulation in Parkinson's disease.
Neurosurgery. 2008 Feb;62 Suppl 2:875-83. doi: 10.1227/01.neu.0000316289.75736.55.
7
Deep brain stimulation activation volumes and their association with neurophysiological mapping and therapeutic outcomes.
J Neurol Neurosurg Psychiatry. 2009 Jun;80(6):659-66. doi: 10.1136/jnnp.2007.126219. Epub 2008 Apr 10.
8
Towards construction of an ideal stereotactic brain atlas.
Acta Neurochir (Wien). 2008 Jan;150(1):1-13; discussion 13-4. doi: 10.1007/s00701-007-1270-6. Epub 2007 Nov 21.
9
Brain shift: an error factor during implantation of deep brain stimulation electrodes.
J Neurosurg. 2007 Nov;107(5):989-97. doi: 10.3171/JNS-07/11/0989.
10
Assessment of brain shift related to deep brain stimulation surgery.
Stereotact Funct Neurosurg. 2008;86(1):44-53. doi: 10.1159/000108588. Epub 2007 Sep 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验