Suppr超能文献

针对深部脑刺激靶点的交叉验证研究:从专家法到基于图谱、基于分割和自动配准算法

A cross validation study of deep brain stimulation targeting: from experts to atlas-based, segmentation-based and automatic registration algorithms.

作者信息

Castro F Javier Sanchez, Pollo Claudio, Meuli Reto, Maeder Philippe, Cuisenaire Olivier, Cuadra Meritxell Bach, Villemure Jean-Guy, Thiran Jean-Philippe

机构信息

Signal Processing Institute, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.

出版信息

IEEE Trans Med Imaging. 2006 Nov;25(11):1440-50. doi: 10.1109/TMI.2006.882129.

Abstract

Validation of image registration algorithms is a difficult task and open-ended problem, usually application-dependent. In this paper, we focus on deep brain stimulation (DBS) targeting for the treatment of movement disorders like Parkinson's disease and essential tremor. DBS involves implantation of an electrode deep inside the brain to electrically stimulate specific areas shutting down the disease's symptoms. The subthalamic nucleus (STN) has turned out to be the optimal target for this kind of surgery. Unfortunately, the STN is in general not clearly distinguishable in common medical imaging modalities. Usual techniques to infer its location are the use of anatomical atlases and visible surrounding landmarks. Surgeons have to adjust the electrode intraoperatively using electrophysiological recordings and macrostimulation tests. We constructed a ground truth derived from specific patients whose STNs are clearly visible on magnetic resonance (MR) T2-weighted images. A patient is chosen as atlas both for the right and left sides. Then, by registering each patient with the atlas using different methods, several estimations of the STN location are obtained. Two studies are driven using our proposed validation scheme. First, a comparison between different atlas-based and nonrigid registration algorithms with a evaluation of their performance and usability to locate the STN automatically. Second, a study of which visible surrounding structures influence the STN location. The two studies are cross validated between them and against expert's variability. Using this scheme, we evaluated the expert's ability against the estimation error provided by the tested algorithms and we demonstrated that automatic STN targeting is possible and as accurate as the expert-driven techniques currently used. We also show which structures have to be taken into account to accurately estimate the STN location.

摘要

图像配准算法的验证是一项艰巨的任务且是一个开放式问题,通常取决于应用场景。在本文中,我们聚焦于用于治疗帕金森病和特发性震颤等运动障碍的深部脑刺激(DBS)靶点定位。DBS涉及将电极植入脑深部以电刺激特定区域来消除疾病症状。丘脑底核(STN)已被证明是这类手术的最佳靶点。不幸的是,在常见的医学成像模态中,STN通常难以清晰辨别。推断其位置的常用技术是使用解剖图谱和可见的周围标志物。外科医生必须在术中使用电生理记录和宏观刺激测试来调整电极位置。我们构建了一个基于特定患者的地面真值,这些患者的STN在磁共振(MR)T2加权图像上清晰可见。选择一名患者作为左右两侧的图谱。然后,通过使用不同方法将每个患者与图谱进行配准,获得STN位置的多个估计值。使用我们提出的验证方案进行了两项研究。首先,比较不同的基于图谱和非刚性配准算法,并评估它们自动定位STN的性能和可用性。其次,研究哪些可见的周围结构会影响STN的位置。这两项研究相互交叉验证,并与专家的变异性进行对比。使用该方案,我们根据测试算法提供的估计误差评估了专家的能力,并且证明了自动STN靶点定位是可行的,并且与目前使用的专家驱动技术一样准确。我们还展示了为准确估计STN位置必须考虑哪些结构。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验