Wang Yalin, Gu Xianfeng, Hayashi Kiralee M, Chan Tony F, Thompson Paul M, Yau Shing-Tung
Mathematics Department, UCLA, Los Angeles, CA 90095, USA.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):657-65. doi: 10.1007/11566489_81.
We develop a general approach that uses holomorphic 1-forms to parameterize anatomical surfaces with complex (possibly branching) topology. Rather than evolve the surface geometry to a plane or sphere, we instead use the fact that all orientable surfaces are Riemann surfaces and admit conformal structures, which induce special curvilinear coordinate systems on the surfaces. Based on Riemann surface structure, we can then canonically partition the surface into patches. Each of these patches can be conformally mapped to a parallelogram. The resulting surface subdivision and the parameterizations of the components are intrinsic and stable. To illustrate the technique, we computed conformal structures for several types of anatomical surfaces in MRI scans of the brain, including the cortex, hippocampus, and lateral ventricles. We found that the resulting parameterizations were consistent across subjects, even for branching structures such as the ventricles, which are otherwise difficult to parameterize. Compared with other variational approaches based on surface inflation, our technique works on surfaces with arbitrary complexity while guaranteeing minimal distortion in the parameterization. It also offers a way to explicitly match landmark curves in anatomical surfaces such as the cortex, providing a surface-based framework to compare anatomy statistically and to generate grids on surfaces for PDE-based signal processing.
我们开发了一种通用方法,该方法使用全纯1-形式来参数化具有复杂(可能分支)拓扑结构的解剖表面。我们不是将表面几何形状演化到平面或球体,而是利用所有可定向表面都是黎曼曲面且具有共形结构这一事实,这些共形结构会在表面上诱导出特殊的曲线坐标系。基于黎曼曲面结构,我们随后可以将表面规范地划分为面片。这些面片中的每一个都可以共形映射到一个平行四边形。由此产生的表面细分和各组件的参数化是内在的且稳定的。为了说明该技术,我们在脑部MRI扫描中计算了几种类型解剖表面的共形结构,包括皮质、海马体和侧脑室。我们发现,即使对于像脑室这样难以参数化的分支结构,所得参数化在不同受试者之间也是一致的。与其他基于表面膨胀的变分方法相比,我们的技术适用于任意复杂程度的表面,同时保证参数化中的失真最小。它还提供了一种方法来明确匹配解剖表面(如皮质)中的地标曲线,提供了一个基于表面的框架,用于统计比较解剖结构并在表面上生成网格以进行基于偏微分方程的信号处理。