Chou Yi-Yu, Leporé Natasha, de Zubicaray Greig I, Carmichael Owen T, Becker James T, Toga Arthur W, Thompson Paul M
Laboratory of Neuro Imaging, Department of Neurology, UCLA School of Medicine, 635 Charles E. Young Drive South, Suite 225E, Los Angeles, CA, USA.
Centre for Magnetic Resonance, University of Queensland, Brisbane, Australia.
Neuroimage. 2008 Apr 1;40(2):615-630. doi: 10.1016/j.neuroimage.2007.11.047. Epub 2007 Dec 8.
We developed and validated a new method to create automated 3D parametric surface models of the lateral ventricles in brain MRI scans, providing an efficient approach to monitor degenerative disease in clinical studies and drug trials. First, we used a set of parameterized surfaces to represent the ventricles in four subjects' manually labeled brain MRI scans (atlases). We fluidly registered each atlas and mesh model to MRIs from 17 Alzheimer's disease (AD) patients and 13 age- and gender-matched healthy elderly control subjects, and 18 asymptomatic ApoE4-carriers and 18 age- and gender-matched non-carriers. We examined genotyped healthy subjects with the goal of detecting subtle effects of a gene that confers heightened risk for Alzheimer's disease. We averaged the meshes extracted for each 3D MR data set, and combined the automated segmentations with a radial mapping approach to localize ventricular shape differences in patients. Validation experiments comparing automated and expert manual segmentations showed that (1) the Hausdorff labeling error rapidly decreased, and (2) the power to detect disease- and gene-related alterations improved, as the number of atlases, N, was increased from 1 to 9. In surface-based statistical maps, we detected more widespread and intense anatomical deficits as we increased the number of atlases. We formulated a statistical stopping criterion to determine the optimal number of atlases to use. Healthy ApoE4-carriers and those with AD showed local ventricular abnormalities. This high-throughput method for morphometric studies further motivates the combination of genetic and neuroimaging strategies in predicting AD progression and treatment response.
我们开发并验证了一种新方法,可在脑部磁共振成像(MRI)扫描中创建侧脑室的自动三维参数化表面模型,为临床研究和药物试验中监测退行性疾病提供了一种有效方法。首先,我们使用一组参数化表面来表示四名受试者手动标记的脑部MRI扫描(图谱)中的脑室。我们将每个图谱和网格模型灵活配准到17名阿尔茨海默病(AD)患者、13名年龄和性别匹配的健康老年对照受试者、18名无症状载脂蛋白E4(ApoE4)携带者以及18名年龄和性别匹配的非携带者的MRI上。我们对基因分型的健康受试者进行检查,目的是检测一种增加患阿尔茨海默病风险的基因的细微影响。我们对从每个三维MR数据集中提取的网格进行平均,并将自动分割与径向映射方法相结合,以定位患者脑室形状的差异。将自动分割与专家手动分割进行比较的验证实验表明:(1)随着图谱数量N从1增加到9,豪斯多夫标记误差迅速降低;(2)检测疾病和基因相关改变的能力提高。在基于表面的统计图中,随着图谱数量的增加,我们检测到更广泛、更明显的解剖学缺陷。我们制定了一个统计停止标准,以确定使用的图谱的最佳数量。健康的ApoE4携带者和AD患者均表现出局部脑室异常。这种用于形态学研究的高通量方法进一步推动了遗传和神经影像学策略在预测AD进展和治疗反应方面的结合。