Okada K, Ramesh V, Krishnan A, Singh M, Akdemir U
Real-Time Vision and Modeling Dept., Siemens Corporate Research, Princeton, USA.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):781-9. doi: 10.1007/11566489_96.
Two novel methods are proposed for robust segmentation of pulmonary nodules in CT images. The proposed solutions locate and segment a nodule in a semi-automatic fashion with a marker indicating the target. The solutions are motivated for handling the difficulty to segment juxtapleural, or wall-attached, nodules by using only local information without a global lung segmentation. They are realized as extensions of the recently proposed robust Gaussian fitting approach. Algorithms based on i) 3D morphological opening with anisotropic structuring element and ii) extended mean shift with a Gaussian repelling prior are presented. They are empirically compared against the robust Gaussian fitting solution by using a large clinical high-resolution CT dataset. The results show 8% increase, resulting in 95% correct segmentation rate for the dataset.
提出了两种用于在CT图像中对肺结节进行稳健分割的新方法。所提出的解决方案以半自动方式定位和分割结节,并带有一个指示目标的标记。这些解决方案旨在解决仅使用局部信息而无需进行全局肺部分割来分割胸膜旁或壁附着结节的困难。它们是作为最近提出的稳健高斯拟合方法的扩展而实现的。提出了基于以下两种算法:i)使用各向异性结构元素的3D形态学开运算和ii)具有高斯排斥先验的扩展均值漂移。通过使用大型临床高分辨率CT数据集,将它们与稳健高斯拟合解决方案进行了经验比较。结果显示分割率提高了8%,该数据集的正确分割率达到了95%。