Department of Electrical and Computer Engineering, University of Dayton, 300 College Park, Dayton, OH 45469-0232, United States.
Department of Engineering and Computer Science, Cedarville University, 251 N. Main St. Cedarville, OH 45314, United States.
Med Image Anal. 2015 May;22(1):48-62. doi: 10.1016/j.media.2015.02.002. Epub 2015 Feb 23.
We present new pulmonary nodule segmentation algorithms for computed tomography (CT). These include a fully-automated (FA) system, a semi-automated (SA) system, and a hybrid system. Like most traditional systems, the new FA system requires only a single user-supplied cue point. On the other hand, the SA system represents a new algorithm class requiring 8 user-supplied control points. This does increase the burden on the user, but we show that the resulting system is highly robust and can handle a variety of challenging cases. The proposed hybrid system starts with the FA system. If improved segmentation results are needed, the SA system is then deployed. The FA segmentation engine has 2 free parameters, and the SA system has 3. These parameters are adaptively determined for each nodule in a search process guided by a regression neural network (RNN). The RNN uses a number of features computed for each candidate segmentation. We train and test our systems using the new Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI) data. To the best of our knowledge, this is one of the first nodule-specific performance benchmarks using the new LIDC-IDRI dataset. We also compare the performance of the proposed methods with several previously reported results on the same data used by those other methods. Our results suggest that the proposed FA system improves upon the state-of-the-art, and the SA system offers a considerable boost over the FA system.
我们提出了新的用于计算机断层扫描(CT)的肺结节分割算法。这些算法包括全自动(FA)系统、半自动(SA)系统和混合系统。与大多数传统系统一样,新的 FA 系统只需要一个用户提供的线索点。另一方面,SA 系统代表了一种新的算法类别,需要 8 个用户提供的控制点。这确实增加了用户的负担,但我们表明,所得到的系统具有高度的鲁棒性,可以处理各种具有挑战性的情况。所提出的混合系统从 FA 系统开始。如果需要改进的分割结果,则部署 SA 系统。FA 分割引擎有 2 个自由参数,SA 系统有 3 个。这些参数是在由回归神经网络(RNN)引导的搜索过程中为每个结节自适应确定的。RNN 使用为每个候选分割计算的许多特征。我们使用新的肺图像数据库联盟和图像数据库资源倡议(LIDC-IDRI)数据集来训练和测试我们的系统。据我们所知,这是第一个使用新的 LIDC-IDRI 数据集的针对特定结节的性能基准之一。我们还将所提出的方法的性能与其他方法在同一数据上报告的几个先前结果进行了比较。我们的结果表明,所提出的 FA 系统优于现有技术,而 SA 系统相对于 FA 系统有了很大的提高。