Suppr超能文献

用于超声图像分割的谱聚类算法。

Spectral clustering algorithms for ultrasound image segmentation.

作者信息

Archip Neculai, Rohling Robert, Cooperberg Peter, Tahmasebpour Hamid, Warfield Simon K

机构信息

Computational Radiology Laboratory, Harvard Medical School, Department of Radiology, Brigham and Women's Hospital, Boston, MA, USA.

出版信息

Med Image Comput Comput Assist Interv. 2005;8(Pt 2):862-9. doi: 10.1007/11566489_106.

Abstract

Image segmentation algorithms derived from spectral clustering analysis rely on the eigenvectors of the Laplacian of a weighted graph obtained from the image. The NCut criterion was previously used for image segmentation in supervised manner. We derive a new strategy for unsupervised image segmentation. This article describes an initial investigation to determine the suitability of such segmentation techniques for ultrasound images. The extension of the NCut technique to the unsupervised clustering is first described. The novel segmentation algorithm is then performed on simulated ultrasound images. Tests are also performed on abdominal and fetal images with the segmentation results compared to manual segmentation. Comparisons with the classical NCut algorithm are also presented. Finally, segmentation results on other types of medical images are shown.

摘要

源自谱聚类分析的图像分割算法依赖于从图像获得的加权图的拉普拉斯矩阵的特征向量。NCut准则先前已用于有监督方式的图像分割。我们推导出一种用于无监督图像分割的新策略。本文描述了一项初步研究,以确定此类分割技术对超声图像的适用性。首先描述了将NCut技术扩展到无监督聚类。然后在模拟超声图像上执行新颖的分割算法。还对腹部和胎儿图像进行了测试,并将分割结果与手动分割进行比较。还给出了与经典NCut算法的比较。最后,展示了在其他类型医学图像上的分割结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验