Suppr超能文献

基于聚类和图割的 3D 多目标半自动分割最短路径约束。

Shortest-path constraints for 3D multiobject semiautomatic segmentation via clustering and Graph Cut.

出版信息

IEEE Trans Image Process. 2013 Nov;22(11):4224-36. doi: 10.1109/TIP.2013.2271192. Epub 2013 Jun 26.

Abstract

We derive shortest-path constraints from graph models of structure adjacency relations and introduce them in a joint centroidal Voronoi image clustering and Graph Cut multiobject semiautomatic segmentation framework. The vicinity prior model thus defined is a piecewise-constant model incurring multiple levels of penalization capturing the spatial configuration of structures in multiobject segmentation. Qualitative and quantitative analyses and comparison with a Potts prior-based approach and our previous contribution on synthetic, simulated, and real medical images show that the vicinity prior allows for the correct segmentation of distinct structures having identical intensity profiles and improves the precision of segmentation boundary placement while being fairly robust to clustering resolution. The clustering approach we take to simplify images prior to segmentation strikes a good balance between boundary adaptivity and cluster compactness criteria furthermore allowing to control the trade-off. Compared with a direct application of segmentation on voxels, the clustering step improves the overall runtime and memory footprint of the segmentation process up to an order of magnitude without compromising the quality of the result.

摘要

我们从结构邻接关系的图模型中推导出最短路径约束,并将其引入到联合质心 Voronoi 图像聚类和图割多目标半自动分割框架中。由此定义的邻近先验模型是一个分段常数模型,会产生多个惩罚级别,以捕获多目标分割中结构的空间配置。定性和定量分析以及与基于 Potts 先验的方法和我们之前关于合成、模拟和真实医学图像的贡献的比较表明,邻近先验允许对具有相同强度分布的不同结构进行正确分割,并提高分割边界放置的精度,同时对聚类分辨率具有相当的鲁棒性。我们在分割之前简化图像所采用的聚类方法在边界适应性和聚类紧凑性标准之间取得了很好的平衡,此外还允许控制权衡。与直接在体素上进行分割相比,聚类步骤将分割过程的整体运行时间和内存占用提高了一个数量级,而不会影响结果的质量。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验