Schmid Volker J, Whitcher Brandon J, Yang Guang-Zhong, Taylor N Jane, Padhani Anwar R
Institute for Biomedical Engineering, Suite 5, Sherfield Building, Imperial College, South Kensington, London SW7 2AZ, United Kingdom.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):886-93. doi: 10.1007/11566489_109.
This paper assesses the estimation of kinetic parameters from dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI). Asymptotic results from likelihood-based nonlinear regression are compared with results derived from the posterior distribution using Bayesian estimation, along with the output from an established software package (MRIW). By using the estimated error from kinetic parameters, it is possible to produce more accurate clinical statistics, such as tumor size, for patients with breast tumors. Further analysis has also shown that Bayesian methods are more accurate and do not suffer from convergence problems, but at a higher computational cost.
本文评估了从动态对比增强磁共振成像(DCE-MRI)中估计动力学参数的方法。将基于似然的非线性回归的渐近结果与使用贝叶斯估计从后验分布得出的结果进行比较,同时还与一个成熟软件包(MRIW)的输出结果进行比较。通过使用动力学参数的估计误差,可以为患有乳腺肿瘤的患者生成更准确的临床统计数据,如肿瘤大小。进一步的分析还表明,贝叶斯方法更准确,且不存在收敛问题,但计算成本更高。