Suppr超能文献

统计比较人类乳腺癌动态对比增强 MRI 药代动力学模型。

Statistical comparison of dynamic contrast-enhanced MRI pharmacokinetic models in human breast cancer.

机构信息

Institute of Imaging Science, Vanderbilt University, Nashville, Tennessee 37232-2310, USA.

出版信息

Magn Reson Med. 2012 Jul;68(1):261-71. doi: 10.1002/mrm.23205. Epub 2011 Nov 29.

Abstract

By fitting dynamic contrast-enhanced MRI data to an appropriate pharmacokinetic model, quantitative physiological parameters can be estimated. In this study, we compare four different models by applying four statistical measures to assess their ability to describe dynamic contrast-enhanced MRI data obtained in 28 human breast cancer patient sets: the chi-square test (χ(2)), Durbin-Watson statistic, Akaike information criterion, and Bayesian information criterion. The pharmacokinetic models include the fast exchange limit model with (FXL_v(p)) and without (FXL) a plasma component, and the fast and slow exchange regime models (FXR and SXR, respectively). The results show that the FXL_v(p) and FXR models yielded the smallest χ(2) in 45.64 and 47.53% of the voxels, respectively; they also had the smallest number of voxels showing serial correlation with 0.71 and 2.33%, respectively. The Akaike information criterion indicated that the FXL_v(p) and FXR models were preferred in 42.84 and 46.59% of the voxels, respectively. The Bayesian information criterion also indicated the FXL_v(p) and FXR models were preferred in 39.39 and 45.25% of the voxels, respectively. Thus, these four metrics indicate that the FXL_v(p) and the FXR models provide the most complete statistical description of dynamic contrast-enhanced MRI time courses for the patients selected in this study.

摘要

通过将动态对比增强 MRI 数据拟合到适当的药代动力学模型中,可以估计出定量的生理参数。在这项研究中,我们通过应用四种统计措施来比较四种不同的模型,以评估它们描述 28 个人类乳腺癌患者组获得的动态对比增强 MRI 数据的能力:卡方检验(χ(2))、德宾-沃森统计量、赤池信息量准则和贝叶斯信息量准则。药代动力学模型包括带有(FXL_v(p))和不带有(FXL)血浆成分的快速交换极限模型,以及快速和慢速交换区模型(FXR 和 SXR)。结果表明,在 45.64%和 47.53%的体素中,FXL_v(p)和 FXR 模型分别产生了最小的 χ(2);它们也具有最小数量的体素显示出序列相关性,分别为 0.71%和 2.33%。Akaike 信息量准则表明,在 42.84%和 46.59%的体素中,FXL_v(p)和 FXR 模型分别更优。贝叶斯信息量准则也表明,在 39.39%和 45.25%的体素中,FXL_v(p)和 FXR 模型分别更优。因此,这四个指标表明,在本研究中选择的患者中,FXL_v(p)和 FXR 模型为动态对比增强 MRI 时间过程提供了最完整的统计描述。

相似文献

1
Statistical comparison of dynamic contrast-enhanced MRI pharmacokinetic models in human breast cancer.
Magn Reson Med. 2012 Jul;68(1):261-71. doi: 10.1002/mrm.23205. Epub 2011 Nov 29.
3
Statistical analysis of pharmacokinetic models in dynamic contrast-enhanced magnetic resonance imaging.
Med Image Comput Comput Assist Interv. 2005;8(Pt 2):886-93. doi: 10.1007/11566489_109.
4
Dynamic contrast-enhanced MRI of prostate cancer at 3 T: a study of pharmacokinetic parameters.
AJR Am J Roentgenol. 2007 Oct;189(4):849. doi: 10.2214/AJR.06.1329.
6
A novel AIF tracking method and comparison of DCE-MRI parameters using individual and population-based AIFs in human breast cancer.
Phys Med Biol. 2011 Sep 7;56(17):5753-69. doi: 10.1088/0031-9155/56/17/018. Epub 2011 Aug 12.
7
A fast method of generating pharmacokinetic maps from dynamic contrast-enhanced images of the breast.
Med Image Comput Comput Assist Interv. 2006;9(Pt 2):101-8. doi: 10.1007/11866763_13.
9
Computer-aided diagnosis of breast DCE-MRI using pharmacokinetic model and 3-D morphology analysis.
Magn Reson Imaging. 2014 Apr;32(3):197-205. doi: 10.1016/j.mri.2013.12.002. Epub 2013 Dec 17.
10
Bayesian methods for pharmacokinetic models in dynamic contrast-enhanced magnetic resonance imaging.
IEEE Trans Med Imaging. 2006 Dec;25(12):1627-36. doi: 10.1109/tmi.2006.884210.

引用本文的文献

2
Quantitative magnetic resonance imaging and tumor forecasting of breast cancer patients in the community setting.
Nat Protoc. 2021 Nov;16(11):5309-5338. doi: 10.1038/s41596-021-00617-y. Epub 2021 Sep 22.
4
Dynamic Contrast Enhancement (DCE) MRI-Derived Renal Perfusion and Filtration: Basic Concepts.
Methods Mol Biol. 2021;2216:205-227. doi: 10.1007/978-1-0716-0978-1_12.
5
6
Robust estimation of hemo-dynamic parameters in traditional DCE-MRI models.
PLoS One. 2019 Jan 3;14(1):e0209891. doi: 10.1371/journal.pone.0209891. eCollection 2019.
10
Are complex DCE-MRI models supported by clinical data?
Magn Reson Med. 2017 Mar;77(3):1329-1339. doi: 10.1002/mrm.26189. Epub 2016 Mar 4.

本文引用的文献

3
Dynamic Contrast Enhanced Magnetic Resonance Imaging in Oncology: Theory, Data Acquisition, Analysis, and Examples.
Curr Med Imaging Rev. 2009 May 1;3(2):91-107. doi: 10.2174/157340507780619179.
5
Dynamic NMR effects in breast cancer dynamic-contrast-enhanced MRI.
Proc Natl Acad Sci U S A. 2008 Nov 18;105(46):17937-42. doi: 10.1073/pnas.0804224105. Epub 2008 Nov 13.
8
Diagnostic breast MR imaging: current status and future directions.
Radiol Clin North Am. 2007 Sep;45(5):863-80, vii. doi: 10.1016/j.rcl.2007.07.002.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验