Suppr超能文献

一种显著性地图模型的神经网络实现。

A neural network implementation of a saliency map model.

作者信息

de Brecht Matthew, Saiki Jun

机构信息

PRESTO, Japan Science and Technology Agency, Japan.

出版信息

Neural Netw. 2006 Dec;19(10):1467-74. doi: 10.1016/j.neunet.2005.12.004. Epub 2006 May 9.

Abstract

The saliency map model proposed by Itti and Koch [Itti, L., & Koch, C. (2000). A saliency-based search mechanism for overt and covert shifts of visual attention. Vision Research, 40, 1489-1506] has been a popular model for explaining the guidance of visual attention using only bottom-up information. In this paper we expand Itti and Koch's model and propose how it could be implemented by neural networks with biologically realistic dynamics. In particular, we show that by incorporating synaptic depression into the model, network activity can be normalized and competition within the feature maps can be regulated in a biologically plausible manner. Furthermore, the dynamical nature of our model permits further analysis of the time course of saliency computation, and also allows the model to calculate saliency for dynamic visual scenes. In addition to explaining the high saliency of pop-out targets in visual search tasks, our model explains attentional grab by sudden-onset stimuli, which was not accounted for by previous models.

摘要

伊蒂和科赫提出的显著图模型[伊蒂,L.,& 科赫,C.(2000年)。一种基于显著性的视觉注意显性和隐性转移搜索机制。《视觉研究》,40,1489 - 1506]一直是一个流行的模型,用于仅使用自下而上的信息来解释视觉注意的引导。在本文中,我们扩展了伊蒂和科赫的模型,并提出了如何通过具有生物现实动力学的神经网络来实现它。特别是,我们表明通过将突触抑制纳入模型,网络活动可以被归一化,并且特征图内的竞争可以以生物学上合理的方式进行调节。此外,我们模型的动态性质允许对显著性计算的时间进程进行进一步分析,并且还允许模型计算动态视觉场景的显著性。除了解释视觉搜索任务中弹出目标的高显著性之外,我们的模型还解释了突发刺激引起的注意捕捉,这是以前的模型没有考虑到的。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验