Suppr超能文献

在动态环境中考虑情感因素和选择性运动分析的立体显著性图。

Stereo saliency map considering affective factors and selective motion analysis in a dynamic environment.

作者信息

Jeong Sungmoon, Ban Sang-Woo, Lee Minho

机构信息

School of Electrical Engineering and Computer Science, Kyungpook National University, 1370 Sankyuk-Dong, Puk-Gu, Taegu 702-701, Republic of Korea.

出版信息

Neural Netw. 2008 Dec;21(10):1420-30. doi: 10.1016/j.neunet.2008.10.002. Epub 2008 Nov 1.

Abstract

We propose new integrated saliency map and selective motion analysis models partly inspired by a biological visual attention mechanism. The proposed models consider not only binocular stereopsis to identify a final attention area so that the system focuses on the closer area as in human binocular vision, based on the single eye alignment hypothesis, but also both the static and dynamic features of an input scene. Moreover, the proposed saliency map model includes an affective computing process that skips an unwanted area and pays attention to a desired area, which reflects the human preference and refusal in subsequent visual search processes. In addition, we show the effectiveness of considering the symmetry feature determined by a neural network and an independent component analysis (ICA) filter which are helpful to construct an object preferable attention model. Also, we propose a selective motion analysis model by integrating the proposed saliency map with a neural network for motion analysis. The neural network for motion analysis responds selectively to rotation, expansion, contraction and planar motion of the optical flow in a selected area. Experiments show that the proposed model can generate plausible scan paths and selective motion analysis results for natural input scenes.

摘要

我们提出了新的集成显著图和选择性运动分析模型,部分灵感来源于生物视觉注意力机制。所提出的模型不仅考虑双目立体视觉以确定最终的注意力区域,从而使系统基于单眼对齐假设,像人类双目视觉那样聚焦于更近的区域,还考虑输入场景的静态和动态特征。此外,所提出的显著图模型包括一个情感计算过程,该过程会跳过不需要的区域并关注期望的区域,这反映了人类在后续视觉搜索过程中的偏好和拒绝。另外,我们展示了考虑由神经网络和独立成分分析(ICA)滤波器确定的对称特征的有效性,这有助于构建一个更倾向于关注物体的模型。而且,我们通过将所提出的显著图与用于运动分析的神经网络相结合,提出了一种选择性运动分析模型。用于运动分析的神经网络会对选定区域内光流的旋转、扩展、收缩和平移运动做出选择性响应。实验表明,所提出的模型能够为自然输入场景生成合理的扫描路径和选择性运动分析结果。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验