Suppr超能文献

使用胜者全得网络对视觉注意力分配进行建模。

Modelling divided visual attention with a winner-take-all network.

作者信息

Standage Dominic I, Trappenberg Thomas P, Klein Raymond M

机构信息

Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada.

出版信息

Neural Netw. 2005 Jun-Jul;18(5-6):620-7. doi: 10.1016/j.neunet.2005.06.015.

Abstract

Experimental evidence on the distribution of visual attention supports the idea of a spatial saliency map, whereby bottom-up and top-down influences on attention are integrated by a winner-take-all mechanism. We implement this map with a continuous attractor neural network, and test the ability of our model to explain experimental evidence on the distribution of spatial attention. The majority of evidence supports the view that attention is unitary, but recent experiments provide evidence for split attentional foci. We simulate two such experiments. Our results suggest that the ability to divide attention depends on sustained endogenous signals from short term memory to the saliency map, stressing the interplay between working memory mechanisms and attention.

摘要

关于视觉注意力分布的实验证据支持空间显著性图的观点,即自下而上和自上而下对注意力的影响通过赢家通吃机制进行整合。我们用连续吸引子神经网络实现了这个图,并测试了我们模型解释空间注意力分布实验证据的能力。大多数证据支持注意力是单一的观点,但最近的实验提供了注意力焦点分裂的证据。我们模拟了两个这样的实验。我们的结果表明,注意力分散的能力取决于从短期记忆到显著性图的持续内源性信号,强调了工作记忆机制与注意力之间的相互作用。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验