de Silva Namal, Nichiporuk Rita V, Dahl Lawrence F
University of Wisconsin-Madison, Department of Chemistry, 1101 University Avenue, Madison, WI 53706, USA.
Dalton Trans. 2006 May 21(19):2291-300. doi: 10.1039/b514105m. Epub 2006 Feb 14.
In ongoing attempts of directed synthesis of high-nuclearity Au-Pt carbonyl/phosphine clusters with [Ni6(CO)12]2- used as reducing agent and CO source, we have isolated and characterized two new closely related variable-stoichiometric trimetallic clusters, Pt3(Pt(1-x)Ni(x))(AuPPh3)2(mu2-CO)4(CO)(PPh3)3 (1) and Pt2(Pt(2-y)Ni(y))(AuPPh3)2(mu2-CO)4(CO)2(PPh3)2 (2). Their M4Au2 cores may be envisioned as substitutional disordered butterfly-based M4Au2 frameworks (M = Pt/Ni) formed by connections of the two basal M(B) atoms with both (Au-Au)-linked Au(PPh3) moieties. Based upon low-temperature CCD X-ray diffraction studies of eight crystals obtained from different samples, ligation-induced site-specific Pt/Ni substitutional disorder (involving formal insertion of Ni in place of Pt) in a given crystal was found to occur only at the one OC-attached basal M(B) site in 1 or at both OC-attached basal M(B) sites in 2 corresponding to a crystal composite of the Pt3(Pt(1-x)Ni(x))Au2 core in 1 or of the Pt2(Pt(2-y)Ni(y))Au2 core in 2; the Ph3P-attached M(B) site (M(B) = Pt) in 1 and two wingtip M(w) sites (M(w) = Pt) in 1 and 2 were not substitutionally disordered. The resulting variable stoichiometry of the M4Au2 core in 1 may be viewed as a crystal composite of two superimposed individual stereoisomers, Pt4(AuPPh3)2(mu2-CO)4(CO)(PPh3)3 (1a) and Pt3Ni(AuPPh3)2(mu2-CO)4(CO)(PPh3)3 (1b), in the averaged unit cell of a given crystal. Likewise, 2 represents the crystal-averaged composite of three individual stereoisomers, Pt4(AuPPh3)2(mu2-CO)4(CO)2(PPh3)2 (2a), Pt3Ni(AuPPh3)2(mu2-CO)4(CO)2(PPh3)2 (2b), and Pt2Ni2(AuPPh3)2(mu2-CO)4(CO)2(PPh3)2 (2c). Formal Ni substitution for Pt at only the basal M(B) site(s) in the four crystal composites each of 1 and 2 was found to vary widely from 17% to 79% Ni in 1 and from 21% to 95% Ni in 2. Nevertheless, reasonably close Pt/Ni occupancy factors were found within each of the four pairs of composite crystals selected from samples obtained from duplicate syntheses. Both 1 and 2 may be formally derived from the electronically equivalent classic butterfly Pt4(mu2-CO)5(PPh3)4 cluster by replacement of its bridging mu2-CO ligand spanning the basal M(B)-M(B) edge with two one-electron donating (Au-Au)-linked AuPPh3 moieties along with the substitution of a terminal CO in place of one or both M(B)-attached PPh3 ligands in 1 and 2, respectively; site-specific Pt/Ni substitutional disorder occurs only at the CO-attached M(B) sites. The variable-stoichiometric 1 and 2 re also electronically equivalent and geometrically related to the crystal-ordered butterfly-based Pt4(mu2-CO)4(PR3)4(mu3-HgX)2 clusters (R3 = Ph3, MePh2; X = CF3, Br, I).
在以[Ni₆(CO)₁₂]²⁻作为还原剂和CO源定向合成高核Au - Pt羰基/膦簇合物的持续尝试中,我们分离并表征了两个新的密切相关的可变化学计量比三金属簇合物,Pt₃(Pt₍₁₋ₓ₎Ni₍ₓ₎)(AuPPh₃)₂(μ₂ - CO)₄(CO)(PPh₃)₃ (1)和Pt₂(Pt₍₂₋ₙ₎Ni₍ₙ₎)(AuPPh₃)₂(μ₂ - CO)₄(CO)₂(PPh₃)₂ (2)。它们的M₄Au₂核可被设想为由两个基底M(B)原子与两个(Au - Au)连接的Au(PPh₃)部分连接形成的基于取代无序蝴蝶的M₄Au₂框架(M = Pt/Ni)。基于对从不同样品获得的八个晶体的低温电荷耦合器件X射线衍射研究,发现在给定晶体中,连接诱导的位点特异性Pt/Ni取代无序(涉及Ni正式取代Pt)仅发生在1中一个与OC相连的基底M(B)位点或2中两个与OC相连的基底M(B)位点,分别对应于1中Pt₃(Pt₍₁₋ₓ₎Ni₍ₓ₎)Au₂核或2中Pt₂(Pt₍₂₋ₙ₎Ni₍ₙ₎)Au₂核的晶体复合物;1中与Ph₃P相连的M(B)位点(M(B) = Pt)以及1和2中的两个翼尖M(w)位点(M(w) = Pt)没有取代无序。1中M₄Au₂核产生的可变化学计量比可被视为给定晶体平均晶胞中两个叠加的单个立体异构体Pt₄(AuPPh₃)₂(μ₂ - CO)₄(CO)(PPh₃)₃ (1a)和Pt₃Ni(AuPPh₃)₂(μ₂ - CO)₄(CO)(PPh₃)₃ (1b)的晶体复合物。同样,2代表三个单个立体异构体Pt₄(AuPPh₃)₂(μ₂ - CO)₄(CO)₂(PPh₃)₂ (2a)、Pt₃Ni(AuPPh₃)₂(μ₂ - CO)₄(CO)₂(PPh₃)₂ (2b)和Pt₂Ni₂(AuPPh₃)₂(μ₂ - CO)₄(CO)₂(PPh₃)₂ (2c)的晶体平均复合物。发现在1和2各自的四个晶体复合物中,仅在基底M(B)位点的Ni对Pt的正式取代在1中从17%到79%的Ni变化很大,在2中从21%到95%的Ni变化很大。然而,在从重复合成获得的样品中选择的四对复合晶体中的每一对中都发现了合理接近的Pt/Ni占据因子。1和2都可以通过用两个单电子供体(Au - Au)连接的AuPPh₃部分取代跨越基底M(B) - M(B)边缘的桥连μ₂ - CO配体,以及分别用一个末端CO取代1和2中一个或两个与M(B)相连的PPh₃配体,从电子等效的经典蝴蝶Pt₄(μ₂ - CO)₅(PPh₃)₄簇合物正式衍生而来;位点特异性Pt/Ni取代无序仅发生在与CO相连的M(B)位点。可变化学计量比的1和2在电子上也是等效的,并且在几何上与晶体有序的基于蝴蝶的Pt₄(μ₂ - CO)₄(PR₃)₄(μ₃ - HgX)₂簇合物(R₃ = Ph₃, MePh₂; X = CF₃, Br, I)相关。