Mareque Rivas Juan C, Hinchley Sarah L, Metteau Laurent, Parsons Simon
School of Chemistry, University of Edinburgh, Joseph Black Building, King's Buildings, West Mains Road, Edinburgh, UK EH9 3JJ.
Dalton Trans. 2006 May 21(19):2316-22. doi: 10.1039/b516234c. Epub 2006 Feb 9.
A series of nine tripodal tetradentate ligands based on tris(pyridyl-2-methyl)amine TPA with hydrogen bond donors R in one, two and three of the pyridine 6-positions (R = NH2 amino, L(Am-1,2,3); NHCH2(t)Bu neopentylamino, L(Np-1,2,3); NHCO(t)Bu pivaloylamido, L(Piv-1,2,3)) and TPA are used to investigate the effect of different hydrogen bonding microenvironments on electrochemical properties of their LCuCl complexes. The hydrogen bond donors are rigidly preorganised and suitably oriented for intramolecular N-H...Cl-Cu hydrogen bonds. Cyclic voltammetry studies show that the reduction potential of the Cu(II)/Cu(I) couple as a function of the ligand follows the order TPA < L(Am-n) < or approximately L(Np-n) < L(Piv-n), and that the magnitude of the effect increases with the number of hydrogen bonding groups. These trends could be explained in terms of the steric and electronic effects exerted by these groups stabilising the Cu(I) oxidation state. In fact, the X-ray structure of the air-stable [(L(Piv-3))Cu(I)Cl] complex is reported and shows elongated Cu-N and Cu-Cl bonds, presumably due to the combination of steric and electron withdrawing effects exerted by the three pivaloylamido groups. We reasoned that the strength of hydrogen bonding in the Cu(I) and Cu(II) oxidation states could differ and therefore contribute also to the aforementioned redox changes; this hypothesis is tested using IR and NMR spectroscopy. IR studies of the [(L(Piv-1,2,3))Cu(I)Cl] and [(L(Piv-1,2,3))Cu(II)Cl]+ complexes in acetonitrile show that the intramolecular N-H...Cl-Cu hydrogen bonding weakens in the order L(Piv-1) > L(Piv-2) > L(Piv-3), and that it is stronger in the Cu(I) complexes. The 1H NMR spectra of the [(L(Piv1,2,3))Cu(I)Cl] complexes are in complete agreement with the IR data, and reveal that the stability of the Cu(I) complexes to oxidation in air increases in the order L(Piv-1) < L(Piv-2) << L(Piv-3). The hydrogen bonds in the Cu(I) complexes are stronger because of the higher electron density on the Cl ligand, when compared to the Cu(II) complexes. This is consistent with ab initio MP2 calculations performed on the complexes [(L(Piv-3))Cu(I)Cl] and [(L(Piv-3))Cu(II)Cl]+. Thus, the electron density of a metal-bound ligand acting as hydrogen bond acceptor is revealed as the major factor in determining the strength of the hydrogen bonds formed. From the IR data the energies of the N-H...Cl-Cu hydrogen bonds is estimated, as is the contribution of changes in hydrogen bond strength with the oxidation state of the copper centre and number of interactions to stabilising the Cu(I) state. Some of the implications of this result in dioxygen activation chemistry are discussed.
一系列九个基于三(吡啶 - 2 - 甲基)胺(TPA)的三脚架四齿配体,在吡啶6位的一个、两个和三个位置带有氢键供体R(R = NH₂氨基,L(Am - 1,2,3);NHCH₂(t)Bu新戊基氨基,L(Np - 1,2,3);NHCO(t)Bu新戊酰氨基,L(Piv - 1,2,3)),与TPA一起用于研究不同氢键微环境对其LCuCl配合物电化学性质的影响。氢键供体呈刚性预组织且取向合适,可形成分子内N - H...Cl - Cu氢键。循环伏安法研究表明,Cu(II)/Cu(I)电对的还原电位随配体变化的顺序为TPA < L(Am - n) < 或近似L(Np - n) < L(Piv - n),且该效应的大小随氢键基团数量增加而增大。这些趋势可以通过这些基团施加的空间和电子效应来解释,这些效应稳定了Cu(I)氧化态。实际上,报道了空气稳定的[(L(Piv - 3))Cu(I)Cl]配合物的X射线结构,显示出Cu - N和Cu - Cl键伸长,这可能是由于三个新戊酰氨基基团施加的空间和吸电子效应的组合。我们推测Cu(I)和Cu(II)氧化态下氢键的强度可能不同,因此也对上述氧化还原变化有贡献;使用红外和核磁共振光谱对这一假设进行了检验。在乙腈中对[(L(Piv - 1,2,3))Cu(I)Cl]和[(L(Piv - 1,2,3))Cu(II)Cl]+配合物的红外研究表明,分子内N - H...Cl - Cu氢键的减弱顺序为L(Piv - 1) > L(Piv - 2) > L(Piv - 3),并且在Cu(I)配合物中更强。[(L(Piv1,2,3))Cu(I)Cl]配合物的¹H NMR光谱与红外数据完全一致,并表明Cu(I)配合物在空气中对氧化的稳定性按L(Piv - 1) < L(Piv - 2) << L(Piv - 3)的顺序增加。与Cu(II)配合物相比,Cu(I)配合物中的氢键更强,这是因为Cl配体上的电子密度更高。这与对[(L(Piv - 3))Cu(I)Cl]和[(L(Piv - 3))Cu(II)Cl]+配合物进行的从头算MP2计算一致。因此,作为氢键受体的金属结合配体的电子密度被揭示为决定形成的氢键强度的主要因素。根据红外数据估计了N - H...Cl - Cu氢键的能量,以及氢键强度随铜中心氧化态和相互作用数量变化对稳定Cu(I)态的贡献。讨论了这一结果在双氧活化化学中的一些影响。