Ehudin Melanie A, Schaefer Andrew W, Adam Suzanne M, Quist David A, Diaz Daniel E, Tang Joel A, Solomon Edward I, Karlin Kenneth D
Department of Chemistry , Johns Hopkins University , Baltimore , Maryland 21218 , USA . Email:
Department of Chemistry , Stanford University , Stanford , California 94305 , USA . Email:
Chem Sci. 2019 Jan 4;10(10):2893-2905. doi: 10.1039/c8sc05165h. eCollection 2019 Mar 14.
Dioxygen reduction by heme-copper oxidases is a critical biochemical process, wherein hydrogen bonding is hypothesized to participate in the critical step involving the active-site reductive cleavage of the O-O bond. Sixteen novel synthetic heme-(μ-O )-Cu(TMPA) complexes, whose design is inspired by the cytochrome oxidase active site structure, were generated in an attempt to form the first intramolecular H-bonded complexes. Derivatives of the "parent" ligand (TMPA, TMPA = (tris((2-pyridyl)methyl)amine)) possessing one or two amine pendants preferentially form an H-bond with the copper-bound -atom of the peroxide bridge. This is evidenced by a characteristic blue shift in the ligand-to-metal charge transfer (LMCT) bands observed in UV-vis spectroscopy (consistent with lowering of the peroxo π* relative to the iron orbitals) and a weakening of the O-O bond determined by resonance Raman spectroscopy (rR), with support from Density Functional Theory (DFT) calculations. Remarkably, with the TMPA-based infrastructure ( similar heme-peroxo-copper complexes with different copper ligands), the typically undetected Cu-O stretch for these complexes was observed rR, affording critical insights into the nature of the O-O peroxo core for the complexes studied. While amido functionalities have been shown to have greater H-bonding capabilities than their amino counterparts, in these heme-peroxo-copper complexes amido substituents distort the local geometry such that H-bonding with the peroxo core only imparts a weak electronic effect; optimal H-bonding interactions are observed by employing two amino groups on the copper ligand. The amino-substituted systems presented in this work reveal a key orientational anisotropy in H-bonding to the peroxo core for activating the O-O bond, offering critical insights into effective O-O cleavage chemistry. These findings indirectly support computational and protein structural studies suggesting the presence of an interstitial H-bonding water molecule in the CO active site, which is critical for the desired reactivity. The results are evaluated with appropriate controls and discussed with respect to potential O-reduction capabilities.
血红素 - 铜氧化酶催化的双氧还原是一个关键的生化过程,其中氢键被认为参与了涉及活性位点O - O键还原裂解的关键步骤。为了形成首个分子内氢键复合物,人们设计并合成了16种新型血红素 - (μ - O) - Cu(TMPA)复合物,其设计灵感来源于细胞色素氧化酶的活性位点结构。“母体”配体(TMPA,TMPA = 三((2 - 吡啶基)甲基)胺)的衍生物带有一个或两个胺侧链,它们优先与过氧化物桥中与铜相连的氧原子形成氢键。这一点在紫外 - 可见光谱中观察到的配体 - 金属电荷转移(LMCT)带的特征性蓝移中得到了证明(这与过氧π*相对于铁轨道的能级降低相一致),并且通过共振拉曼光谱(rR)测定的O - O键减弱也证明了这一点,同时密度泛函理论(DFT)计算也提供了支持。值得注意的是,在基于TMPA的结构体系(具有不同铜配体的类似血红素 - 过氧 - 铜复合物)中,通过rR观察到了这些复合物中通常未被检测到的Cu - O伸缩振动,这为所研究复合物的O - O过氧核心的性质提供了关键见解。虽然酰胺官能团已被证明比其氨基对应物具有更强的氢键能力,但在这些血红素 - 过氧 - 铜复合物中,酰胺取代基会扭曲局部几何结构,使得与过氧核心的氢键作用仅产生微弱的电子效应;通过在铜配体上使用两个氨基可以观察到最佳的氢键相互作用。本文中展示的氨基取代体系揭示了在与过氧核心形成氢键以激活O - O键方面存在关键的取向各向异性,这为有效的O - O裂解化学提供了关键见解。这些发现间接支持了计算和蛋白质结构研究,这些研究表明在CO活性位点存在一个间隙氢键水分子,这对于所需的反应活性至关重要。对结果进行了适当的对照评估,并就潜在的O还原能力进行了讨论。