Lee Dong-Heon, Hatcher Lanying Q, Vance Michael A, Sarangi Ritimukta, Milligan Ashley E, Sarjeant Amy A Narducci, Incarvito Christopher D, Rheingold Arnold L, Hodgson Keith O, Hedman Britt, Solomon Edward I, Karlin Kenneth D
Department of Chemistry, The Johns Hopkins University, Baltimore, Maryland 21218, USA.
Inorg Chem. 2007 Jul 23;46(15):6056-68. doi: 10.1021/ic700541k. Epub 2007 Jun 20.
In order to contribute to an understanding of the effects of thioether sulfur ligation in copper-O(2) reactivity, the tetradentate ligands L(N3S) (2-ethylthio-N,N-bis(pyridin-2-yl)methylethanamine) and L(N3S')(2-ethylthio-N,N-bis(pyridin-2-yl)ethylethanamine) have been synthesized. Corresponding copper(I) complexes, [CuI(L(N3S))]ClO(4) (1-ClO(4)), [CuI(L(N3S))]B(C(6)F(5))(4) (1-B(C(6)F(5))(4)), and [CuI(L(N3S'))]ClO(4) (2), were generated, and their redox properties, CO binding, and O(2)-reactivity were compared to the situation with analogous compounds having all nitrogen donor ligands, CuI(TMPA)(MeCN) and Cu(I)(PMAP) (TMPA = tris(2-pyridylmethyl)amine; PMAP = bis[2-(2-pyridyl)ethyl]-(2-pyridyl)methylamine). X-ray structures of 1-B(C(6)F(5))(4), a dimer, and copper(II) complex Cu(II)(L(N3S))(MeOH)(2) (3) were obtained; the latter possesses axial thioether coordination. At low temperature in CH(2)Cl(2), acetone, or 2-methyltetrahydrofuran (MeTHF), 1 reacts with O(2) and generates an adduct formulated as an end-on peroxodicopper(II) complex {Cu(II)(L(N3S))}(2)(mu-1,2-O(2)(2-)) (4)){lambda(max) = 530 (epsilon approximately 9200 M(-1) cm(-1)) and 605 nm (epsilon approximately 11,800 M(-1) cm(-1))}; the number and relative intensity of LMCT UV-vis bands vary from those for {Cu(II)(TMPA)}(2)(O(2)(2-)) {lambda(max) = 524 nm (epsilon = 11,300 M(-1) cm(-1)) and 615 nm (epsilon = 5800 M(-1) cm(-1))} and are ascribed to electronic structure variation due to coordination geometry changes with the L(N3S) ligand. Resonance Raman spectroscopy confirms the end-on peroxo-formulation {nu(O-O) = 817 cm(-1) (16-18O(2) Delta = 46 cm(-1)) and nu(Cu-O) = 545 cm(-1) (16-18O(2) Delta = 26 cm(-1)); these values are lower in energy than those for {Cu(II)(TMPA)}(2)(O(2)(2-)) {nu(Cu-O) = 561 cm(-1) and nu(O-O) = 827 cm(-1)} and can be attributed to less electron density donation from the peroxide pi* orbitals to the Cu(II) ion. Complex 4 is the first copper-dioxygen adduct with thioether ligation; direct evidence comes from EXAFS spectroscopy {Cu K-edge; Cu-S = 2.4 Angstrom}. Following a Cu(I)(L(N3S))/O(2) reaction and warming, the L(N3S) thioether ligand is oxidized to the sulfoxide in a reaction modeling copper monooxygenase activity. By contrast, 2 is unreactive toward dioxygen probably due to its significantly increased Cu(II)/Cu(I) redox potential, an effect of ligand chelate ring size (in comparison to 1). Discussion of the relevance of the chemistry to copper enzyme O(2)-activation, and situations of biological stress involving methionine oxidation, is provided.
为了有助于理解硫醚硫配位对铜与氧反应活性的影响,已合成了四齿配体L(N3S)(2-乙硫基-N,N-双(吡啶-2-基)甲基乙胺)和L(N3S')(2-乙硫基-N,N-双(吡啶-2-基)乙基乙胺)。生成了相应的铜(I)配合物[CuI(L(N3S))]ClO(4)(1-ClO(4))、[CuI(L(N3S))]B(C(6)F(5))(4)(1-B(C(6)F(5))(4))和[CuI(L(N3S'))]ClO(4)(2),并将它们的氧化还原性质、CO结合和氧反应活性与具有全氮供体配体的类似化合物[CuI(TMPA)(MeCN)]⁺和[Cu(I)(PMAP)]⁺(TMPA = 三(2-吡啶基甲基)胺;PMAP = 双[2-(2-吡啶基)乙基]-(2-吡啶基)甲胺)的情况进行了比较。获得了1-B(C(6)F(5))(4)(一种二聚体)和铜(II)配合物Cu(II)(L(N3S))(MeOH)(2)(3)的X射线结构;后者具有轴向硫醚配位。在CH(2)Cl(2)、丙酮或2-甲基四氢呋喃(MeTHF)中低温下,1与O(2)反应生成一种加合物,其化学式为端基过氧二铜(II)配合物{Cu(II)(L(N3S))}(2)(μ-1,2-O(2)(2-))(4){λmax = 530(ε约为9200 M⁻¹ cm⁻¹)和605 nm(ε约为11,800 M⁻¹ cm⁻¹)};配体到金属离子的电荷转移(LMCT)紫外可见光谱带的数量和相对强度与{Cu(II)(TMPA)}(2)(O(2)(2-)) {λmax = 524 nm(ε = 11,300 M⁻¹ cm⁻¹)和615 nm(ε = 5800 M⁻¹ cm⁻¹)}不同,这归因于由于L(N3S)配体导致的配位几何变化引起的电子结构变化。共振拉曼光谱证实了端基过氧结构{ν(O-O) = 817 cm⁻¹(¹⁶-¹⁸O₂ Δ = 46 cm⁻¹)和ν(Cu-O) = 545 cm⁻¹(¹⁶-¹⁸O₂ Δ = 26 cm⁻¹);这些值的能量低于{Cu(II)(TMPA)}(2)(O(2)(2-)) {ν(Cu-O) = 561 cm⁻¹和ν(O-O) = 827 cm⁻¹},并且可归因于过氧化物π*轨道向Cu(II)离子的电子密度贡献较少。配合物4是第一个具有硫醚配位的铜-双氧加合物;直接证据来自扩展X射线吸收精细结构光谱(EXAFS){铜K边;Cu-S = 2.4埃}。在[Cu(I)(L(N3S))]⁺/O(2)反应并升温后,L(N3S)硫醚配体在模拟铜单加氧酶活性的反应中被氧化为亚砜。相比之下,2对双氧无反应,可能是由于其显著增加的Cu(II)/Cu(I)氧化还原电位,这是配体螯合环大小的影响(与1相比)。讨论了该化学性质与铜酶氧活化以及涉及甲硫氨酸氧化的生物应激情况的相关性。